Robust People Detection and Tracking in a Multi-Camera Indoor Visual Surveillance System

In this paper we describe the analysis component of an indoor, real-time, multi-camera surveillance system. The analysis includes: (1) a novel feature-level foreground segmentation method which achieves efficient and reliable segmentation results even under complex conditions, (2) an efficient greedy search based approach for tracking multiple people through occlusion, and (3) a method for multi-camera handoff that associates individual trajectories in adjacent cameras. The analysis is used for an 18 camera surveillance system that has been running continuously in an indoor business over the past several months. Our experiments demonstrate that the processing method for people detection and tracking across multiple cameras is fast and robust.

[1]  Fatih Porikli,et al.  Performance Evaluation of Object Detection and Tracking Systems , 2006 .

[2]  Max Lu,et al.  Robust and efficient foreground analysis for real-time video surveillance , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[3]  Azriel Rosenfeld,et al.  Tracking Groups of People , 2000, Comput. Vis. Image Underst..

[4]  Mubarak Shah,et al.  Consistent Labeling of Tracked Objects in Multiple Cameras with Overlapping Fields of View , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Fatih Murat Porikli,et al.  Shadow flow: a recursive method to learn moving cast shadows , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[6]  Ajay Divakaran,et al.  Multi-camera calibration, object tracking and query generation , 2003, 2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698).

[7]  R. Cucchiara,et al.  Track-based and object-based occlusion for people tracking refinement in indoor surveillance , 2004, VSSN '04.

[8]  Andreas Girgensohn,et al.  Support for effective use of multiple video streams in security , 2006, VSSN '06.

[9]  W. Eric L. Grimson,et al.  Learning Patterns of Activity Using Real-Time Tracking , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Quan Pan,et al.  Real-time multiple objects tracking with occlusion handling in dynamic scenes , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).