Bialgebraic foundations for the operational semantics of string diagrams
暂无分享,去创建一个
Filippo Bonchi | Fabio Zanasi | Robin Piedeleu | Paweł Sobociński | F. Bonchi | P. Sobocinski | R. Piedeleu | F. Zanasi
[1] Robin Milner,et al. Calculi for Synchrony and Asynchrony , 1983, Theor. Comput. Sci..
[2] BonchiFilippo,et al. Full Abstraction for Signal Flow Graphs , 2015 .
[3] Davide Sangiorgi,et al. The Pi-Calculus - a theory of mobile processes , 2001 .
[4] Paolo Rapisarda,et al. A categorical approach to open and interconnected dynamical systems , 2015, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).
[5] Brendan Fong. A Compositional Framework for Passive Linear Circuits , 2015 .
[6] James Worrell,et al. Terminal sequences for accessible endofunctors , 1999, CMCS.
[7] John Power,et al. Distributivity for endofunctors, pointed and co-pointed endofunctors, monads and comonads , 2000, CMCS.
[8] C. A. R. Hoare,et al. Communicating sequential processes , 1978, CACM.
[9] Filippo Bonchi,et al. Deconstructing Lawvere with distributive laws , 2018, J. Log. Algebraic Methods Program..
[10] Bob Coecke,et al. Interacting Quantum Observables , 2008, ICALP.
[11] Filippo Bonchi,et al. A Categorical Semantics of Signal Flow Graphs , 2014, CONCUR.
[12] John Power,et al. The Category Theoretic Understanding of Universal Algebra: Lawvere Theories and Monads , 2007, Computation, Meaning, and Logic.
[13] Robert de Simone,et al. Higher-Level Synchronising Devices in Meije-SCCS , 1985, Theor. Comput. Sci..
[14] Fabio Gadducci,et al. Rewriting modulo symmetric monoidal structure , 2016, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).
[15] P. Selinger. A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.
[16] Jan Friso Groote,et al. Transition System Specifications with Negative Premises , 1993, Theor. Comput. Sci..
[17] Bartek Klin,et al. Bialgebras for structural operational semantics: An introduction , 2011, Theor. Comput. Sci..
[18] Roberto Bruni,et al. On Hierarchical Graphs: Reconciling Bigraphs, Gs-monoidal Theories and Gs-graphs , 2014, Fundam. Informaticae.
[19] Dan R. Ghica,et al. Diagrammatic Reasoning for Delay-Insensitive Asynchronous Circuits , 2013, Computation, Logic, Games, and Quantum Foundations.
[20] Filippo Bonchi,et al. Diagrammatic algebra: from linear to concurrent systems , 2019, Proc. ACM Program. Lang..
[21] Dusko Pavlovic,et al. Quantum and Classical Structures in Nondeterminstic Computation , 2008, QI.
[22] Nicoletta Sabadini,et al. Span(Graph): A Categorial Algebra of Transition Systems , 1997, AMAST.
[23] Gordon D. Plotkin,et al. Towards a mathematical operational semantics , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.
[24] Samson Abramsky,et al. A categorical semantics of quantum protocols , 2004, LICS 2004.
[25] Filippo Bonchi,et al. Full Abstraction for Signal Flow Graphs , 2015, POPL.
[26] Filippo Bonchi,et al. The Calculus of Signal Flow Diagrams I: Linear relations on streams , 2017, Inf. Comput..
[27] Robin Milner,et al. A Calculus of Communicating Systems , 1980, Lecture Notes in Computer Science.
[28] David Harel,et al. Statecharts: A Visual Formalism for Complex Systems , 1987, Sci. Comput. Program..
[29] John C. Baez,et al. Categories in Control , 2014, 1405.6881.
[30] Ugo Montanari,et al. A model for distributed systems based on graph rewriting , 1987, JACM.
[31] Alexander Kurz,et al. Nominal String Diagrams , 2019, CALCO.
[32] Ugo Montanari,et al. A First Order Coalgebraic Model of pi-Calculus Early Observational Equivalence , 2002, CONCUR.
[33] Pawel Sobocinski. A non-interleaving process calculus for multi-party synchronisation , 2009, ICE.
[34] Dan R. Ghica,et al. A structural and nominal syntax for diagrams , 2017, QPL.
[35] David I. Spivak,et al. Hypergraph Categories , 2018, Journal of Pure and Applied Algebra.
[36] Filippo Bonchi,et al. Graphical Affine Algebra , 2019, 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).
[37] Alexandra Silva,et al. Generalizing the powerset construction, coalgebraically , 2010, FSTTCS.
[38] Jurriaan Rot,et al. Presenting Distributive Laws , 2013, CALCO.
[39] Jan Vitek,et al. The Seal Calculus , 2005, Inf. Comput..
[40] Luca Cardelli,et al. Mobile Ambients , 1998, FoSSaCS.
[41] Ivan Lanese,et al. Hoare vs Milner: Comparing Synchronizations in a Graphical Framework With Mobility , 2006, Electron. Notes Theor. Comput. Sci..
[42] Robin Milner,et al. The Space and Motion of Communicating Agents , 2009 .
[43] Filippo Bonchi,et al. Bialgebraic Semantics for String Diagrams , 2019, CONCUR.