Automatic generation of semantic icon encodings for visualizations

Authors use icon encodings to indicate the semantics of categorical information in visualizations. The default icon libraries found in visualization tools often do not match the semantics of the data. Users often manually search for or create icons that are more semantically meaningful. This process can hinder the flow of visual analysis, especially when the amount of data is large, leading to a suboptimal user experience. We propose a technique for automatically generating semantically relevant icon encodings for categorical dimensions of data points. The algorithm employs natural language processing in order to find relevant imagery from the Internet. We evaluate our approach on Mechanical Turk by generating large libraries of icons using Tableau Public workbooks that represent real analytical effort by people out in the world. Our results show that the automatic algorithm does nearly as well as the manually created icons, and particularly has higher user satisfaction for larger cardinalities of data.

[1]  B. Schneirdeman,et al.  Designing the User Interface: Strategies for Effective Human-Computer Interaction , 1998 .

[2]  Deborah Hix,et al.  Graphical encoding for information visualization: using icon color, shape, and size to convey nominal and quantitative data , 1997 .

[3]  Aaron Marcus,et al.  Icons, symbols, and signs: visible languages to facilitate communication , 2003, INTR.

[4]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[5]  Vidya Setlur,et al.  Semanticons: Visual Metaphors as File Icons , 2005, Comput. Graph. Forum.

[6]  Jock D. Mackinlay,et al.  Automating the design of graphical presentations of relational information , 1986, TOGS.

[7]  W. Cleveland,et al.  Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods , 1984 .

[8]  Andrew Blake,et al.  "GrabCut" , 2004, ACM Trans. Graph..

[9]  Sidney L. Smith,et al.  Color versus shape coding in information displays. , 1964 .

[10]  Brad A. Myers,et al.  WebThumb: interaction techniques for small-screen browsers , 2002, UIST '02.

[11]  Martha Palmer,et al.  Verb Semantics and Lexical Selection , 1994, ACL.

[12]  James T. Enns,et al.  Visualizing real-time multivariate data using preattentive processing , 1995, TOMC.

[13]  Stephen M. Kosslyn,et al.  Graphics and Human Information Processing: A Review of Five Books , 1985 .

[14]  Meera Blattner,et al.  Earcons and Icons: Their Structure and Common Design Principles , 1989, Hum. Comput. Interact..

[15]  Lars Erik Holmquist,et al.  WEST: a Web browser for small terminals , 1999, UIST '99.

[16]  David Gittins,et al.  Icon-Based Human-Computer Interaction , 1986, Int. J. Man Mach. Stud..

[17]  Tyson R. Henry,et al.  Multidimensional icons , 1990, TOGS.

[18]  Ulrich Neumann,et al.  VisualIDs: automatic distinctive icons for desktop interfaces , 2004, SIGGRAPH 2004.

[19]  Mark C. Detweiler,et al.  Iconic Reference: Evolving Perspectives and an Organizing Framework , 1993, Int. J. Man Mach. Stud..

[20]  S. Coren,et al.  Principles of perceptual organization and spatial distortion: the gestalt illusions. , 1980, Journal of experimental psychology. Human perception and performance.

[21]  Yvonne Rogers,et al.  Icons at the Interface: Their Usefulness , 1989, Interact. Comput..

[22]  David McLean,et al.  An Approach for Measuring Semantic Similarity between Words Using Multiple Information Sources , 2003, IEEE Trans. Knowl. Data Eng..

[23]  Allison Woodruff,et al.  Using thumbnails to search the Web , 2001, CHI.

[24]  Meera M. Blattner,et al.  Earcons and Icons: Their Structure and Common Design Principles (Abstract only) , 1989, SGCH.

[25]  Philip Resnik,et al.  Using Information Content to Evaluate Semantic Similarity in a Taxonomy , 1995, IJCAI.