Fast and Accurate Radiative Transfer in the Microwave With Optimum Spectral Sampling

Optimal spectral sampling (OSS) is a computationally fast and accurate method for modeling sensor-band transmittances and radiances. The spectral response of a sensor channel is approximated by an optimally weighted average of monochromatic radiative transfer calculations at optimally selected points. The absorption coefficients for the selected points are obtained from prestored lookup tables. Analytical Jacobians are produced in conjunction with the radiances with very little added computational burden. A microwave version of the OSS training algorithm and forward model has been developed in parallel with the infrared version. The microwave model treats O2 and N2 as fixed gases and H2O and O3 as variable gases. Several reference line-by-line (LBL) models are available for training. The method of tabulating and interpolating absorption coefficients has been optimized for execution speed. Results are shown for OSS application to several current and future microwave sounders. With a selected requirement of 0.05-K rms error (with respect to the reference LBL model), the number of monochromatic points required varies from one, for most window channels, to about four for channels embedded in the 60-GHz O2 line complex and along the 183-GHz H2O line. Even in the cases where a single point is adequate, the optimal point does not necessarily coincide with the center frequency of the channel.

[1]  Darren L. Jackson,et al.  Radiance and Jacobian Intercomparison of Radiative Transfer Models Applied to HIRS and AMSU Channels , 2001 .

[2]  D. H. Staelin,et al.  Polarized thermal microwave emission from oxygen in the mesosphere , 1988 .

[3]  Alan E. Lipton,et al.  Satellite sounding channel optimization in the microwave spectrum , 2003, IEEE Trans. Geosci. Remote. Sens..

[4]  Paul Lee,et al.  Advanced technology microwave sounder on the National Polar-Orbiting Operational Environmental Satellite System , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[5]  Shepard A. Clough,et al.  Air-Broadened Half-Widths of the 22- and 183-GHz Water-Vapor Lines , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[6]  M. Iacono,et al.  Line-by-Line Calculations of Atmospheric Fluxes and Cooling Rates: Application to Water Vapor , 1992 .

[7]  David Kunkee,et al.  Evaluation of the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave Imager Sounder (SSMIS) , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[8]  Thomas Meissner,et al.  Algorithm Theoretical Basis Document (ATBD) for the Conical-Scanning Microwave Imager/Sounder (CMIS) Environmental Data Records (EDRs) , 2001 .

[9]  Philip W. Rosenkranz,et al.  Atmospheric 60-GHz oxygen spectrum : new laboratory measurements and line parameters , 1992 .

[10]  Fuzhong Weng,et al.  A fast radiative transfer model for SSMIS upper atmosphere sounding channels , 2007 .

[11]  Fuzhong Weng,et al.  Advances in Radiative Transfer Modeling in Support of Satellite Data Assimilation , 2007 .

[12]  Shepard A. Clough,et al.  Atmospheric radiative transfer modeling: a summary of the AER codes , 2005 .

[13]  T. Manabe,et al.  A model for the complex permittivity of water at frequencies below 1 THz , 1991 .

[14]  Shepard A. Clough,et al.  Reply to the comment on "Uncertainties in the temperature dependence of the line-coupling parameters of the microwave oxygen band: impact study" , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[15]  Larrabee L. Strow,et al.  An overview of the AIRS radiative transfer model , 2003, IEEE Trans. Geosci. Remote. Sens..

[16]  Jean-Luc Moncet,et al.  OSS Radiative Transfer Method Performance in Real Time Atmosphere Characterization from Satellite Sounding and Imaging Data , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[17]  Shepard A. Clough,et al.  Uncertainties in the temperature dependence of the line-coupling parameters of the microwave oxygen band: impact study , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[18]  M. Yu. Tretyakova,et al.  60-GHz oxygen band : precise broadening and central frequencies of fine-structure lines , absolute absorption profile at atmospheric pressure , and revision of mixing coefficients , 2005 .

[19]  Alex Stogryn The Magnetic Field Dependence of Brightness Temperatures at Frequencies Microwave Absorption , 1989 .

[20]  P. Rosenkranz,et al.  Absorption of Microwaves by Atmospheric Gases , 1993 .

[21]  Marco A. Janssen An Introduction to the Passive Microwave Remote Sensing of Atmospheres , 1993 .

[22]  Marco Matricardi,et al.  RTIASI-4 : a new version of the ECMWF fast radiative transfer model for the infrared atmospheric sounding interferometer , 2003 .

[23]  Philip W. Rosenkranz,et al.  Comment on "Uncertainties in the Temperature Dependence of the Line-Coupling Parameters of the Microwave Oxygen Band: Impact Study" , 2005, IEEE Trans. Geosci. Remote. Sens..

[24]  Michael K. Griffin,et al.  Microwave transfer model differences in remote sensing of cloud liquid water at low temperatures , 1999, IEEE Trans. Geosci. Remote. Sens..

[25]  Brett Candy,et al.  The Assimilation of SSMIS Radiances in Numerical Weather Prediction Models , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[26]  Veronique Achard Trois problemes cles de l'analyse 3d de la structure thermo-dynamique de l'atmosphere par satellite : mesure du contenu en ozone; classification des masses d'air; modelisation hyper rapide du transfert radiatif , 1991 .

[27]  Ye Hong,et al.  Design and Evaluation of the First Special Sensor Microwave Imager/Sounder , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[28]  Yong Han,et al.  Analysis and improvement of tipping calibration for ground-based microwave radiometers , 2000, IEEE Trans. Geosci. Remote. Sens..

[29]  William B. Lenoir,et al.  Microwave spectrum of molecular oxygen in the mesosphere. , 1968 .

[30]  Ye Hong,et al.  Calibration and Validation of DMSP SSMIS Lower Atmospheric Sounding Channels , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[31]  A. Stogryn A Note on Brightness Temperature at Millimeter Wavelengths , 1975, IEEE Transactions on Geoscience Electronics.

[32]  H. Woolf,et al.  Transmittance of atmospheric gases in the microwave region: a fast model. , 1988, Applied optics.

[33]  Jean-Luc Moncet,et al.  Infrared Radiance Modeling by Optimal Spectral Sampling , 2008 .

[34]  Alan E. Lipton,et al.  Polarization of measurement for microwave temperature sounding of the mesosphere , 2002, IEEE Trans. Geosci. Remote. Sens..

[35]  Philip W. Rosenkranz,et al.  A rapid atmospheric transmittance algorithm for microwave sounding channels , 1995, IEEE Trans. Geosci. Remote. Sens..

[36]  Jean-Noël Thépaut,et al.  An improved general fast radiative transfer model for the assimilation of radiance observations , 2004 .

[37]  John Derber,et al.  Atmospheric transmittance of an absorbing gas. 6. OPTRAN status report and introduction to the NESDIS/NCEP community radiative transfer model. , 2004, Applied optics.

[38]  M. Matricardi,et al.  An improved fast radiative transfer model for assimilation of satellite radiance observations , 1999 .

[39]  C. Muth,et al.  Advanced Technology Microwave Sounder on NPOESS and NPP , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[40]  Philip W. Rosenkranz,et al.  Rapid radiative transfer model for AMSU/HSB channels , 2003, IEEE Trans. Geosci. Remote. Sens..

[41]  W. Paul Menzel,et al.  Operational retrieval of atmospheric temperature, moisture, and ozone from MODIS infrared radiances , 2003, SPIE Asia-Pacific Remote Sensing.

[42]  Jean-Luc Moncet,et al.  Approximations of the Planck Function for Models and Measurements Into the Submillimeter Range , 2009, IEEE Geoscience and Remote Sensing Letters.