Adaptive control of manipulators by a contraction analysis approach

In this paper, we investigate the tracking problem of robot manipulators by a contraction analysis approach. We propose a control scheme to achieve the aim of trajectory tracking. Besides, we use a contraction analysis approach rather than Lyapunov function to analysis the stability and guarantee the exponential convergence of the closed system. Finally, the performance of proposed control strategy is proved by MATLAB numerical simulations.

[1]  John J. Craig,et al.  Introduction to Robotics Mechanics and Control , 1986 .

[2]  J. Slotine,et al.  On the Adaptive Control of Robot Manipulators , 1987 .

[3]  Weiping Li,et al.  Composite adaptive control of robot manipulators , 1989, Autom..

[4]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[5]  Zhihua Qu,et al.  Global stability of trajectory tracking of robot underPD control , 1992 .

[6]  Rogelio Lozano,et al.  Adaptive control of robot manipulators with flexible joints , 1992 .

[7]  Yu Tang,et al.  Adaptive control of robot manipulators based on passivity , 1994 .

[8]  Jean-Jacques E. Slotine,et al.  On Contraction Analysis for Non-linear Systems , 1998, Autom..

[9]  Tore Hägglund,et al.  Design of PID controllers based on constrained optimization , 1999 .

[10]  Yunhui Liu,et al.  Dynamic sliding PID control for tracking of robot manipulators: theory and experiments , 2003, IEEE Trans. Robotics Autom..

[11]  Wisama Khalil,et al.  Modeling, Identification and Control of Robots , 2003 .

[12]  Jean-Jacques E. Slotine,et al.  Methodological remarks on contraction theory , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[13]  Jean-Jacques E. Slotine,et al.  On partial contraction analysis for coupled nonlinear oscillators , 2004, Biological Cybernetics.

[14]  Yun Li,et al.  PID control system analysis, design, and technology , 2005, IEEE Transactions on Control Systems Technology.

[15]  Jean-Jacques E. Slotine,et al.  Contraction analysis of time-delayed communications and group cooperation , 2006, IEEE Transactions on Automatic Control.

[16]  Kyoung Kwan Ahn,et al.  Nonlinear PID control to improve the control performance of 2 axes pneumatic artificial muscle manipulator using neural network , 2006 .

[17]  B. Leander A Hierarchical View of Convergent Evolution in Microbial Eukaryotes 1 , 2008, The Journal of eukaryotic microbiology.

[18]  Qiaozhu Mei,et al.  Understanding the Limiting Factors of Topic Modeling via Posterior Contraction Analysis , 2014, ICML.

[19]  Rodolphe Sepulchre,et al.  A Differential Lyapunov Framework for Contraction Analysis , 2012, IEEE Transactions on Automatic Control.

[20]  Robert Bogue,et al.  Robotic exoskeletons: a review of recent progress , 2015, Ind. Robot.