Functional genomic analysis of apoptotic DNA degradation in C. elegans.

[1]  Yigong Shi,et al.  Mechanisms of AIF-Mediated Apoptotic DNA Degradation in Caenorhabditis elegans , 2002, Science.

[2]  Wayne N. Frankel,et al.  The harlequin mouse mutation downregulates apoptosis-inducing factor , 2002, Nature.

[3]  Steven P. Gygi,et al.  Comprehensive proteomic analysis of the human spliceosome , 2002, Nature.

[4]  Jean Thierry-Mieg,et al.  A global analysis of Caenorhabditis elegans operons , 2002, Nature.

[5]  Ming Xu,et al.  Apoptotic DNA fragmentation and tissue homeostasis. , 2002, Trends in cell biology.

[6]  M. Vidal,et al.  Combined Functional Genomic Maps of the C. elegans DNA Damage Response , 2002, Science.

[7]  W. Earnshaw,et al.  CAD/DFF40 Nuclease Is Dispensable for High Molecular Weight DNA Cleavage and Stage I Chromatin Condensation in Apoptosis* , 2001, The Journal of Biological Chemistry.

[8]  G. Pruijn,et al.  Autoantibodies directed to novel components of the PM/Scl complex, the human exosome , 2001, Arthritis research.

[9]  H. Horvitz,et al.  Phagocytosis promotes programmed cell death in C. elegans , 2001, Nature.

[10]  R. Schnabel,et al.  Engulfment genes cooperate with ced-3 to promote cell death in Caenorhabditis elegans , 2001, Nature.

[11]  Jay Z. Parrish,et al.  Mitochondrial endonuclease G is important for apoptosis in C. elegans , 2001, Nature.

[12]  Xu Luo,et al.  Endonuclease G is an apoptotic DNase when released from mitochondria , 2001, Nature.

[13]  G. Pruijn,et al.  The human exosome: an autoantigenic complex of exoribonucleases in myositis and scleroderma , 2000, Arthritis Research & Therapy.

[14]  P. Zipperlen,et al.  Functional genomic analysis of C. elegans chromosome I by systematic RNA interference , 2000, Nature.

[15]  Sebastian A. Leidel,et al.  Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III , 2000, Nature.

[16]  Tak W. Mak,et al.  Two Distinct Pathways Leading to Nuclear Apoptosis , 2000, The Journal of experimental medicine.

[17]  B. Berks,et al.  TatD Is a Cytoplasmic Protein with DNase Activity , 2000, The Journal of Biological Chemistry.

[18]  M. Walport Lupus, DNase and defective disposal of cellular debris , 2000, Nature Genetics.

[19]  T. Möröy,et al.  Features of systemic lupus erythematosus in Dnase1-deficient mice , 2000, Nature Genetics.

[20]  H. Horvitz,et al.  NUC-1, a caenorhabditis elegans DNase II homolog, functions in an intermediate step of DNA degradation during apoptosis. , 2000, Genes & development.

[21]  K. Yamamura,et al.  An auxiliary mode of apoptotic DNA fragmentation provided by phagocytes. , 2000, Genes & development.

[22]  M. Vidal,et al.  Protein interaction mapping in C. elegans using proteins involved in vulval development. , 2000, Science.

[23]  R. Heads,et al.  Cyclophilins and their possible role in the stress response , 1999, International journal of experimental pathology.

[24]  X. Liu,et al.  An APAF-1·Cytochrome c Multimeric Complex Is a Functional Apoptosome That Activates Procaspase-9* , 1999, The Journal of Biological Chemistry.

[25]  Ruedi Aebersold,et al.  Molecular characterization of mitochondrial apoptosis-inducing factor , 1999, Nature.

[26]  S. Korsmeyer,et al.  Cell Death in Development , 1999, Cell.

[27]  Andrew Smith Genome sequence of the nematode C-elegans: A platform for investigating biology , 1998 .

[28]  L. Kaer,et al.  Resistance to DNA fragmentation and chromatin condensation in mice lacking the DNA fragmentation factor 45. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[29]  S. Gordon,et al.  Recognizing death: the phagocytosis of apoptotic cells. , 1998, Trends in cell biology.

[30]  P. Li,et al.  The 40-kDa subunit of DNA fragmentation factor induces DNA fragmentation and chromatin condensation during apoptosis. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[31]  A. Roulston,et al.  CPAN, a human nuclease regulated by the caspase-sensitive inhibitor DFF45 , 1998, Current Biology.

[32]  A. Fire,et al.  Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans , 1998, Nature.

[33]  S. Nagata,et al.  A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD , 1998, Nature.

[34]  John Calvin Reed,et al.  Cytochrome c: Can't Live with It—Can't Live without It , 1997, Cell.

[35]  N. Suzuki,et al.  Development of pathogenic anti‐DNA antibodies in patients with systemic lupus erythematosus , 1997, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[36]  Xiaodong Wang,et al.  Apaf-1, a Human Protein Homologous to C. elegans CED-4, Participates in Cytochrome c–Dependent Activation of Caspase-3 , 1997, Cell.

[37]  R. Durbin,et al.  Pfam: A comprehensive database of protein domain families based on seed alignments , 1997, Proteins.

[38]  Xiaodong Wang,et al.  DFF, a Heterodimeric Protein That Functions Downstream of Caspase-3 to Trigger DNA Fragmentation during Apoptosis , 1997, Cell.

[39]  J. Cidlowski,et al.  Native Recombinant Cyclophilins A, B, and C Degrade DNA Independently of Peptidylprolyl cis-trans-Isomerase Activity , 1997, The Journal of Biological Chemistry.

[40]  M. Lieber The FEN‐1 family of structure‐specific nucleases in eukaryotic dna replication, recombination and repair , 1997, BioEssays : news and reviews in molecular, cellular and developmental biology.

[41]  O. Kops,et al.  A nuclear RNA‐binding cyclophilin in human T cells , 1996, FEBS letters.

[42]  Xiaodong Wang,et al.  Induction of Apoptotic Program in Cell-Free Extracts: Requirement for dATP and Cytochrome c , 1996, Cell.

[43]  H. Steller Mechanisms and genes of cellular suicide , 1995, Science.

[44]  M. Lieber,et al.  The characterization of a mammalian DNA structure‐specific endonuclease. , 1994, The EMBO journal.

[45]  E. Koonin,et al.  RNase T shares conserved sequence motifs with DNA proofreading exonucleases. , 1993, Nucleic acids research.

[46]  G. Donelli,et al.  Cell Death , 1992, Annals of the New York Academy of Sciences.

[47]  C. Riccardi,et al.  Glucocorticoid-induced thymocyte apoptosis: inhibition by interleukin-2 and interleukin-4. , 1992, Pharmacological research.

[48]  D. Bell,et al.  Immunogenic DNA-related factors. Nucleosomes spontaneously released from normal murine lymphoid cells stimulate proliferation and immunoglobulin synthesis of normal mouse lymphocytes. , 1990, The Journal of clinical investigation.

[49]  B. Stollar The origin and pathogenic role of anti-DNA autoantibodies. , 1990, Current opinion in immunology.

[50]  N. Munakata [Genetics of Caenorhabditis elegans]. , 1989, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[51]  G. Fournié Circulating DNA and lupus nephritis. , 1988, Kidney international.

[52]  H. Horvitz,et al.  Genetic control of programmed cell death in the nematode C. elegans , 1986, Cell.

[53]  J. Sulston,et al.  The embryonic cell lineage of the nematode Caenorhabditis elegans. , 1983, Developmental biology.

[54]  A. Wyllie Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation , 1980, Nature.

[55]  J. Sulston Post-embryonic development in the ventral cord of Caenorhabditis elegans. , 1976, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[56]  R. Reddy,et al.  The 3' end formation in small RNAs. , 2002, Gene expression.

[57]  Alex Bateman,et al.  The InterPro database, an integrated documentation resource for protein families, domains and functional sites , 2001, Nucleic Acids Res..

[58]  Li Yi Functional Genomic Analysis of Rice Dwarf Virus , 1998 .

[59]  J. Berg Genome sequence of the nematode C. elegans: a platform for investigating biology. , 1998, Science.

[60]  D. Riddle C. Elegans II , 1998 .

[61]  F. Segal,et al.  A CHARACTERIZATION OF FIBRANT SEGAL CATEGORIES , 2006, math/0603400.