A conservative discretization of the Poisson-Nernst-Planck equations on adaptive Cartesian grids

In this paper we present a novel hybrid finite-difference/finite-volume method for the numerical solution of the nonlinear Poisson-Nernst-Planck (PNP) equations on irregular domains. The method is described in two spatial dimensions but can be extended to three dimensional problems as well. The boundary of the irregular domain is represented implicitly via the zero level set of a signed distance function and quadtree data structures are used to systematically generate adaptive grids needed to accurately capture the electric double layer near the boundary. To handle the nonlinearity in the PNP equations efficiently, a semi-implicit time integration method is utilized. An important feature of our method is that total number of ions in the system is conserved by carefully imposing the boundary conditions, by utilizing a conservative discretization of the diffusive and, more importantly, the nonlinear migrative flux term. Several numerical experiments are conducted which illustrate that the presented method is first-order accurate in time and second-order accurate in space. Moreover, these tests explicitly indicate that the algorithm is also conservative. Finally we illustrate the applicability of our method in the study of the charging dynamics of porous supercapacitors.

[1]  Uri M. Ascher,et al.  Computer methods for ordinary differential equations and differential-algebraic equations , 1998 .

[2]  Frédéric Gibou,et al.  A second order accurate level set method on non-graded adaptive cartesian grids , 2007, J. Comput. Phys..

[3]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[4]  M. Kurnikova,et al.  Three-dimensional Poisson-Nernst-Planck theory studies: influence of membrane electrostatics on gramicidin A channel conductance. , 2000, Biophysical journal.

[5]  J. Strain Tree Methods for Moving Interfaces , 1999 .

[6]  M. Bazant,et al.  Nonlinear electrokinetics at large voltages , 2009 .

[7]  Linda R. Petzold,et al.  An efficient, scalable numerical algorithm for the simulation of electrochemical systems on irregular domains , 2007, J. Comput. Phys..

[8]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[9]  J. Cooley,et al.  THE NUMERICAL SOLUTION OF THE TIME-DEPENDENT NERNST-PLANCK EQUATIONS. , 1965, Biophysical journal.

[10]  A. Kornyshev,et al.  Optimized Structure of Nanoporous Carbon-Based Double-Layer Capacitors , 2005 .

[11]  P. Colella,et al.  A Conservative Adaptive Projection Method for the Variable Density Incompressible Navier-Stokes Equations , 1998 .

[12]  Frédéric Gibou,et al.  A Supra-Convergent Finite Difference Scheme for the Poisson and Heat Equations on Irregular Domains and Non-Graded Adaptive Cartesian Grids , 2007, J. Sci. Comput..

[13]  R. Kötz,et al.  Principles and applications of electrochemical capacitors , 2000 .

[14]  Ali Mani,et al.  On the propagation of concentration polarization from microchannel-nanochannel interfaces. Part I: Analytical model and characteristic analysis. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[15]  S. Quake,et al.  Microfluidics: Fluid physics at the nanoliter scale , 2005 .

[16]  S. Osher,et al.  Spatially adaptive techniques for level set methods and incompressible flow , 2006 .

[17]  M. Markus,et al.  Fluctuation theorem for a deterministic one-particle system. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  A. Nitzan,et al.  A lattice relaxation algorithm for three-dimensional Poisson-Nernst-Planck theory with application to ion transport through the gramicidin A channel. , 1999, Biophysical journal.

[19]  Lee R. White,et al.  Electrophoretic mobility of a spherical colloidal particle , 1978 .

[20]  John R. Miller,et al.  Electrochemical Capacitors for Energy Management , 2008, Science.

[21]  Hang Shi,et al.  Studies of activated carbons used in double-layer capacitors , 1998 .

[22]  Linda R. Petzold,et al.  An algorithm for simulation of electrochemical systems with surface-bulk coupling strategies , 2009, J. Comput. Phys..

[23]  Johannes Lyklema,et al.  Fundamentals of Interface and Colloid Science , 1991 .

[24]  Frédéric Gibou,et al.  Efficient symmetric discretization for the Poisson, heat and Stefan-type problems with Robin boundary conditions , 2010, J. Comput. Phys..

[25]  Sining Yu,et al.  Three-dimensional matched interface and boundary (MIB) method for treating geometric singularities , 2007, J. Comput. Phys..

[26]  J. Lear,et al.  Permeation through an open channel: Poisson-Nernst-Planck theory of a synthetic ionic channel. , 1997, Biophysical journal.

[27]  R. D. Levie,et al.  On porous electrodes in electrolyte solutions: I. Capacitance effects☆ , 1963 .

[28]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[29]  Stewart K Griffiths,et al.  Hierarchical transport networks optimizing dynamic response of permeable energy-storage materials. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  J. Boyd,et al.  Effect of electrode pore geometry modeled using Nernst–Planck–Poisson-modified Stern layer model , 2009 .

[31]  M. Itagaki,et al.  Impedance analysis on electric double layer capacitor with transmission line model , 2007 .

[32]  Ali Mani,et al.  On the propagation of concentration polarization from microchannel-nanochannel interfaces. Part II: Numerical and experimental study. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[33]  Mohammad Mirzadeh,et al.  A second-order discretization of the nonlinear Poisson-Boltzmann equation over irregular geometries using non-graded adaptive Cartesian grids , 2011, J. Comput. Phys..

[34]  Richard P. Buck,et al.  Numerical solution of the Nernst-Planck and poisson equation system with applications to membrane electrochemistry and solid state physics , 1978 .

[35]  D. Levitt General continuum theory for multiion channel. I. Theory. , 1991, Biophysical journal.

[36]  José A. Manzanares,et al.  Numerical simulation of the nonequilibrium diffuse double layer in ion-exchange membranes , 1993 .

[37]  J. Santiago,et al.  Instability of electrokinetic microchannel flows with conductivity gradients , 2004 .

[38]  Martin Z. Bazant,et al.  Current-Voltage Relations for Electrochemical Thin Films , 2005, SIAM J. Appl. Math..

[39]  R. S. Eisenberg,et al.  Computing the Field in Proteins and Channels , 2010, 1009.2857.

[40]  Ronald Fedkiw,et al.  Simulating water and smoke with an octree data structure , 2004, ACM Trans. Graph..

[41]  T. Aslam A partial differential equation approach to multidimensional extrapolation , 2004 .

[42]  P. M. Biesheuvel,et al.  Time-dependent ion selectivity in capacitive charging of porous electrodes. , 2012, Journal of colloid and interface science.

[43]  Qiong Zheng,et al.  Second-order Poisson-Nernst-Planck solver for ion transport , 2011, J. Comput. Phys..

[44]  Hidetsugu Sakaguchi,et al.  Charging dynamics of the electric double layer in porous media. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  B. Conway Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications , 1999 .

[46]  Guo-Wei Wei,et al.  Variational Multiscale Models for Charge Transport , 2012, SIAM Rev..

[47]  E. Demekhin,et al.  Linear and nonlinear evolution and diffusion layer selection in electrokinetic instability. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  Mario Markus,et al.  Multipeaked probability distributions of recurrence times. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[50]  Steven J. Ruuth,et al.  Implicit-explicit methods for time-dependent partial differential equations , 1995 .

[51]  David A Boy,et al.  An Adaptive, Finite Difference Solver for the Nonlinear Poisson-Boltzmann Equation with Applications to Biomolecular Computations , 2013 .

[52]  J. Newman,et al.  Porous‐electrode theory with battery applications , 1975 .

[53]  D. Brogioli,et al.  Ions Transport and Adsorption Mechanisms in Porous Electrodes During Capacitive-Mixing Double Layer Expansion (CDLE) , 2012, The journal of physical chemistry. C, Nanomaterials and interfaces.

[54]  Mohammad Mirzadeh,et al.  Enhanced charging kinetics of porous electrodes: surface conduction as a short-circuit mechanism. , 2014, Physical review letters.

[55]  Guo-Wei Wei,et al.  Matched interface and boundary (MIB) method for elliptic problems with sharp-edged interfaces , 2007, J. Comput. Phys..

[56]  P. M. Biesheuvel,et al.  Nonlinear dynamics of capacitive charging and desalination by porous electrodes. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[58]  Juan G. Santiago,et al.  Capacitive desalination with flow-through electrodes , 2012 .

[59]  M. Bazant,et al.  Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson-Nernst-Planck equations. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[60]  M. Bazant,et al.  Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[61]  M. Bazant,et al.  Induced-charge electro-osmosis , 2003, Journal of Fluid Mechanics.

[62]  Frédéric Gibou,et al.  Geometric integration over irregular domains with application to level-set methods , 2007, J. Comput. Phys..

[63]  Frédéric Gibou,et al.  A supra-convergent finite difference scheme for the variable coefficient Poisson equation on non-graded grids , 2006, J. Comput. Phys..

[64]  Howard Reiss,et al.  A numerical study of the equilibrium and nonequilibrium diffuse double layer in electrochemical cells , 1992 .

[65]  Michael J. Holst,et al.  Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes I: Finite element solutions , 2010, J. Comput. Phys..

[66]  Ronald Fedkiw,et al.  High Resolution Sharp Computational Methods for Elliptic and Parabolic Problems in Complex Geometries , 2013, J. Sci. Comput..

[67]  D. A. Saville,et al.  Colloidal Dispersions: Equilibrium phase behavior , 1989 .

[68]  Edward L Cussler,et al.  Diffusion: Mass Transfer in Fluid Systems , 1984 .

[69]  U. Schumann,et al.  Direct solution of the discretized poisson—Neumann problem on a domain composed of rectangles , 1982 .

[70]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[71]  M. Bazant,et al.  Diffuse-charge dynamics in electrochemical systems. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.