Numerical Stability of Finite Difference Algorithms for Electrochemical Kinetic Simulations: Matrix Stability Analysis of the Classic Explicit, Fully Implicit and Crank-Nicolson Methods and Typical Problems Involving Mixed Boundary Conditions

Abstract The stepwise numerical stability of the classic explicit, fully implicit and Crank-Nicolson finite difference discretizations of example diffusional initial boundary value problems from electrochemical kinetics has been investigated using the matrix method of stability analysis. Special attention has been paid to the effect of the discretization of the mixed, linear boundary condition with time-dependent coefficients on stability, assuming the two-point forward-difference approximations for the gradient at the left boundary (electrode). Under accepted assumptions one obtains the usual stability criteria for the classic explicit and fully implicit methods. The Crank-Nicolson method turns out to be only conditionally stable in contrast to the current thought regarding this method.

[1]  A. R. Mitchell,et al.  The Finite Difference Method in Partial Differential Equations , 1980 .

[2]  Stanley Osher Stability of parabolic difference approximations to certain mixed initial boundary value problems , 1972 .

[3]  S. Feldberg A fast quasi-explicit finite difference method for simulating electrochemical phenomena , 1990 .

[4]  Manfred Rudolph,et al.  Digital simulations with the fast implicit finite difference (FIFD) algorithm: Part II. An improved treatment of electrochemical mechanisms with second-order reactions , 1992 .

[5]  David Potter Computational physics , 1973 .

[6]  G. Stewart,et al.  An Algorithm for Generalized Matrix Eigenvalue Problems. , 1973 .

[7]  R. D. Richtmyer,et al.  Difference methods for initial-value problems , 1959 .

[8]  Garry J. Tee,et al.  Integration of Equations of Parabolic Type by the Method of Nets , 1964 .

[9]  Bernd Speiser EASIEST - a program system for lectroanalytical imulation and parameter imation - I. Simulation of cyclic voltammetric and chronoamperometric experiments , 1990, Comput. Chem..

[10]  Dieter Britz,et al.  Digital Simulation in Electrochemistry , 1981 .

[11]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[12]  G. Pinder,et al.  Numerical solution of partial differential equations in science and engineering , 1982 .

[13]  V S Ryaben'kii,et al.  SPECTRAL STABILITY CRITERIA FOR BOUNDARY-VALUE PROBLEMS FOR NON-SELF-ADJOINT DIFFERENCE EQUATIONS , 1963 .

[14]  On the Stability of Boundary Conditions for Separable Difference Approximations to Parabolic Equations , 1977 .

[15]  M. Shuman Nonunity electrode reaction orders and stationary electrode polarography , 1969 .

[16]  J. R. Cash,et al.  Two New Finite Difference Schemes for Parabolic Equations , 1984 .

[17]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[18]  George W. Batten,et al.  Second-Order Correct Boundary Conditions for the Numerical Solution of the Mixed Boundary Problem for Parabolic Equations , 1963 .

[19]  J. Trapp,et al.  A simple heuristic method for analyzing the effect of boundary conditions on numerical stability , 1976 .

[20]  L. Bieniasz The von Neumann stability of finite-difference algorithms for the electrochemical kinetic simulation of diffusion coupled with homogeneous reactions , 1993 .

[21]  Leslaw K. Bieniasz,et al.  ELSIM - A PC Program for Electrochemical Kinetic Simulations. Version 2.0 - solution of the Sets of Kinetic Partial Differential Equations in One-dimensional Geometry, Using Finite Difference, Orthogonal Collocation Methods , 1993, Comput. Chem..

[22]  D. Britz Investigation of the relative merits of some n-point current approximations in digital simulation , 1987 .

[23]  F. B. Hildebrand Finite-difference equations and simulations , 1968 .

[24]  Björn Engquist,et al.  PDE Software : Modules, Interfaces and Systems , 1984 .

[25]  Pentti Laasonen,et al.  Über eine Methode zur Lösung der Wärmeleitungs-gleichung , 1949 .

[26]  Maximum Norm Stability of Difference Approximations to the Mixed Initial Boundary-Value Problem for the Heat Equation* , 1970 .

[27]  G. Smith,et al.  Numerical Solution of Partial Differential Equations: Finite Difference Methods , 1978 .

[28]  A. R. Gourlay,et al.  The Extrapolation of First Order Methods for Parabolic Partial Differential Equations, II , 1978 .

[29]  David Hoff,et al.  Stability and Convergence of Finite Difference Methods for Systems of Nonlinear Reaction-Diffusion Equations , 1978 .

[30]  S. K. Godunov,et al.  Theory of difference schemes : an introduction , 1964 .

[31]  Ole Østerby,et al.  Some numerical investigations of the stability of electrochemical digital simulation, particularly as affected by first-order homogeneous reactions , 1994 .

[32]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .

[33]  Leslaw K. Bieniasz,et al.  ELSIM - A User-friendly PC Program for Electrochemical Kinetic Simulations. Version 1.0 - Solution of Integral Equations for Linear Scan and Cyclic Voltammetry , 1992, Comput. Chem..