Reverse time migration of multiples: Reducing migration artifacts using the wavefield decomposition imaging condition

ABSTRACTIn the implementation of migration of multiples, reverse time migration (RTM) is superior to other migration algorithms because it can handle steeply dipping structures and offer high-resolution images of the complex subsurface. However, the RTM results using two-way wave equation contain high-amplitude, low-frequency noise and false images generated by improper wave paths in migration velocity model with sharp velocity interfaces or strong velocity gradients. To improve the imaging quality in RTM of multiples, we separate the upgoing and downgoing waves in the propagation of source and receiver wavefields. A complex function involved with the Hilbert transform is used in wavefield decomposition. Our approach is cost effective and avoids the large storage of wavefield snapshots required by the conventional wavefield separation technique. We applied migration of multiples with wavefield decomposition on a simple two-layer model and the Sigsbee 2B synthetic data set. Our results demonstrate that the...

[1]  K. Yoon,et al.  Challenges In Reverse-time Migration , 2004 .

[2]  Antoine Guitton,et al.  Shot-profile Migration of Multiple Reflections , 2002 .

[3]  Brad Artman,et al.  Imaging passive seismic data , 2006 .

[4]  D. J. Verschuur,et al.  Adaptive surface-related multiple elimination , 1992 .

[5]  D. J. Verschuur,et al.  Transforming Multiples Into Primaries: Experience With Field Data , 2005 .

[6]  Kurt J. Marfurt,et al.  Reverse-Time Migration using the Poynting Vector , 2006 .

[7]  Remco Muijs,et al.  Prestack depth migration of primary and surface-related multiple reflections: Part I — Imaging , 2007 .

[8]  Yibo Wang,et al.  Model-based interferometric interpolation method , 2010 .

[9]  Arthur B. Weglein Multiples: Signal or noise? , 2016 .

[10]  G. McMechan MIGRATION BY EXTRAPOLATION OF TIME‐DEPENDENT BOUNDARY VALUES* , 1983 .

[11]  Jenö Gazdag,et al.  Wave equation migration with the phase-shift method , 1978 .

[12]  D. Ristow,et al.  Fourier finite-difference migration , 1994 .

[13]  Z. Yao,et al.  Least-Squares Data to Data Migration , 2014 .

[14]  D. J. Verschuur,et al.  Surface‐related multiple elimination on land seismic data—Strategies via case studies , 2000 .

[15]  Yibo Wang,et al.  Interferometric interpolation of missing seismic data , 2009 .

[16]  J. Sun,et al.  Practical issues in reverse time migration: true amplitude gathers, noise removal and harmonic source encoding , 2009 .

[17]  Evert Slob,et al.  Marchenko imaging: Imaging with primaries, internal multiples, and free-surface multiples , 2015 .

[18]  J. W. Wiggins Kirchhoff integral extrapolation and migration of nonplanar data , 1984 .

[19]  Guojian Shan Source-receiver migration of multiple reflections , 2003 .

[20]  Wafik B. Beydoun,et al.  Paraxial ray Kirchhoff migration , 1988 .

[21]  Scott A. Morton,et al.  An effective imaging condition for reverse-time migration using wavefield decomposition , 2011 .

[22]  Kees Wapenaar,et al.  Green's function retrieval by cross‐correlation in case of one‐sided illumination , 2006 .

[23]  Yi Luo,et al.  An Endemic Problem in Reverse-Time Migration , 2014 .

[24]  Paul J. Fowler,et al.  Suppressing Artifacts In Prestack Reverse Time Migration , 2005 .

[25]  Yi Luo,et al.  Removing false images in reverse time migration: The concept of de-primary , 2015 .

[26]  Gerard T. Schuster,et al.  Joint migration of primary and multiple reflections in RVSP data , 2002 .

[27]  Myung W. Lee,et al.  Optimization of one-way wave equations. , 1985 .

[28]  G. Nolet Book reviewSeismic migration. Imaging of acoustic energy by wavefield extrapolation. A: theoretical aspects: A.J. Berkhout. Developments in Solid Earth Geophysics, 14A. Elsevier, Amsterdam, 1982, 2nd revised , 1985 .

[29]  Hao Hu,et al.  Simultaneous reverse time migration of primaries and free-surface related multiples without multiple prediction , 2014 .

[30]  Evert Slob,et al.  An illustration of adaptive Marchenko imaging , 2015 .

[31]  Yibo Wang,et al.  Reverse time migration of multiples: Eliminating migration artifacts in angle domain common image gathers , 2014 .

[32]  Gerard T. Schuster,et al.  3D wave-equation interferometric migration of VSP free-surface multiples , 2007 .

[33]  Antoine Guitton,et al.  Least-square Attenuation of Reverse Time Migration Artifacts , 2006 .

[34]  Gerard T. Schuster,et al.  Migration methods for imaging different‐order multiples , 2007 .