Relevance Feedback Techniques in Image Retrieval

Despite the extensive research effort, the retrieval techniques used in content-based image retrieval (CBIR) systems lag behind the corresponding techniques in today’s best text search engines, such as Inquery [2], Alta Vista, and Lycos. One reason is that the information embedded in an image is far more complex than that in text. To better understand the history and methodology of CBIR and how we can improve CBIR’s performance, we will first introduce an image object model before we go into the details of the discussions. An image object (O) can be modeled as a function of the image data (D), features (F), and representations (R). This is described below and also shown in Fig. 9.1: $$O = O(D,F,R).$$ (9.1)

[1]  Thomas S. Huang,et al.  Relevance feedback: a power tool for interactive content-based image retrieval , 1998, IEEE Trans. Circuits Syst. Video Technol..

[2]  Shih-Fu Chang,et al.  Transform features for texture classification and discrimination in large image databases , 1994, Proceedings of 1st International Conference on Image Processing.

[3]  Gerard Salton,et al.  Optimization of relevance feedback weights , 1995, SIGIR '95.

[4]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[5]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[6]  B. S. Manjunath,et al.  Texture Features for Browsing and Retrieval of Image Data , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Anil K. Jain,et al.  Texture classification and segmentation using multiresolution simultaneous autoregressive models , 1992, Pattern Recognit..

[8]  Freddy Fierens,et al.  Interactive outlining: an improved approach using active contours , 1993, Electronic Imaging.

[9]  Fang Liu,et al.  Periodicity, Directionality, and Randomness: Wold Features for Image Modeling and Retrieval , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  B. S. Manjunath,et al.  NeTra: A toolbox for navigating large image databases , 1997, Multimedia Systems.

[11]  Shih-Fu Chang,et al.  Image and video search engine for the World Wide Web , 1997, Electronic Imaging.

[12]  C.-C. Jay Kuo,et al.  Texture analysis and classification with tree-structured wavelet transform , 1993, IEEE Trans. Image Process..

[13]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[14]  S. Sclaroff,et al.  ImageRover: a content-based image browser for the World Wide Web , 1997, 1997 Proceedings IEEE Workshop on Content-Based Access of Image and Video Libraries.

[15]  B. S. Manjunath,et al.  Image indexing using a texture dictionary , 1995, Other Conferences.

[16]  Shih-Fu Chang,et al.  Visually Searching the Web for Content , 1997, IEEE Multim..

[17]  B. S. Manjunath,et al.  Texture features and learning similarity , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[18]  Thomas S. Huang,et al.  Content-based image retrieval with relevance feedback in MARS , 1997, Proceedings of International Conference on Image Processing.

[19]  Hideyuki Tamura,et al.  Textural Features Corresponding to Visual Perception , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[20]  Richard C. Dubes,et al.  Performance evaluation for four classes of textural features , 1992, Pattern Recognit..

[21]  W. Bruce Croft,et al.  The INQUERY Retrieval System , 1992, DEXA.

[22]  Christos Faloutsos,et al.  MindReader: Querying Databases Through Multiple Examples , 1998, VLDB.

[23]  Aidong Zhang,et al.  Approaches to image retrieval based on compressed data for multimedia database systems , 1996 .

[24]  Thomas S. Huang,et al.  Relevance feedback techniques in interactive content-based image retrieval , 1997, Electronic Imaging.

[25]  S. Panchanathan,et al.  Image Indexing Using Moments and Wavelets , 1996, 1996. Digest of Technical Papers., International Conference on Consumer Electronics.

[26]  William M. Shaw,et al.  Termrelevance Computations and Perfect Retrieval Performance , 1995, Inf. Process. Manag..

[27]  Tom Minka,et al.  Interactive learning with a "Society of Models" , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[28]  Ronald Fagin,et al.  Incorporating User Preferences in Multimedia Queries , 1997, ICDT.