On the Monotonicity of the Generalized Marcum and Nuttall ${Q}$ -Functions

Monotonicity criteria are established for the generalized Marcum <i>Q</i> -function, <i>QM</i>(alpha,beta), the standard Nuttall <i>Q</i>-function, <i>QM</i>,<i>N</i>(alpha,beta) , and the normalized Nuttall <i>Q</i>-function, <i>QM</i>,<i>N</i>(alpha,beta), with respect to their real order indices <i>M</i>,<i>N</i>. Besides, closed-form expressions are derived for the computation of the standard and normalized Nuttall <i>Q</i>-functions for the case when <i>M</i>,<i>N</i> are odd multiples of 0.5 and <i>M</i> ges <i>N</i>. By exploiting these results, novel upper and lower bounds for <i>QM</i>,<i>N</i>(alpha,beta) and <i>QM</i>,<i>N</i>(alpha,beta) are proposed. Furthermore, specific tight upper and lower bounds for <i>QM</i>(alpha,beta), previously reported in the literature, are extended for real values of <i>M</i>. The offered theoretical results can be efficiently applied in the study of digital communications over fading channels, in the information-theoretic analysis of multiple-input multiple-output systems and in the description of stochastic processes in probability theory, among others.

[1]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[2]  Giuseppe Thadeu Freitas de Abreu,et al.  Jensen-cotes upper and lower bounds on the gaussian Q-function and related functions , 2009, IEEE Transactions on Communications.

[3]  Yin Sun,et al.  New Bounds for the Generalized Marcum $Q$-Function , 2009, IEEE Transactions on Information Theory.

[4]  Pooi Yuen Kam,et al.  On the Mutual Information Distribution of MIMO Rician Fading Channels , 2009, IEEE Transactions on Communications.

[5]  Shidong Zhou,et al.  Tight Bounds of the Generalized Marcum Q-Function Based on Log-Concavity , 2008, IEEE GLOBECOM 2008 - 2008 IEEE Global Telecommunications Conference.

[6]  R. M. A. P. Rajatheva,et al.  Analysis of Equal Gain Combining in Energy Detection for Cognitive Radio over Nakagami Channels , 2008, IEEE GLOBECOM 2008 - 2008 IEEE Global Telecommunications Conference.

[7]  Yin Sun,et al.  Inequalities for the generalized Marcum Q-function , 2008, Appl. Math. Comput..

[8]  Rong Li,et al.  Computing and bounding the first-order Marcum Q-function: a geometric approach , 2008, IEEE Transactions on Communications.

[9]  Nan Ding,et al.  A flexible method to approximate Marcum Q-function based on geometric way of thinking , 2008, 2008 3rd International Symposium on Communications, Control and Signal Processing.

[10]  Dian Gong,et al.  Tight geometric bound for Marcum Q-function , 2008 .

[11]  Rong Li,et al.  Generic Exponential Bounds on the Generalized Marcum Q-Function via the Geometric Approach , 2007, IEEE GLOBECOM 2007 - IEEE Global Telecommunications Conference.

[12]  Sonia Aïssa,et al.  Joint and Marginal Eigenvalue Distributions of (Non)Central Complex Wishart Matrices and PDF-Based Approach for Characterizing the Capacity Statistics of MIMO Ricean and Rayleigh Fading Channels , 2007, IEEE Transactions on Wireless Communications.

[13]  Jean-Paul M. G. Linnartz,et al.  Performance Analysis of Primary User Detection in a Multiple Antenna Cognitive Radio , 2007, 2007 IEEE International Conference on Communications.

[14]  Andrea J. Goldsmith,et al.  Antenna Array Processing in Fading and Interference: An Interference-Cancellation vs. Diversity Comparative Performance , 2007, 2007 IEEE International Conference on Communications.

[15]  Keang-Po Ho,et al.  Soft-Decoding of Low-Density Parity Check Codes for DPSK Signals , 2007, OFC/NFOEC 2007 - 2007 Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference.

[16]  Mohamed-Slim Alouini,et al.  On the Energy Detection of Unknown Signals Over Fading Channels , 2007, IEEE Transactions on Communications.

[17]  Matthew R. McKay,et al.  MIMO multichannel beamforming: SER and outage using new eigenvalue distributions of complex noncentral Wishart matrices , 2006, IEEE Transactions on Communications.

[18]  Marvin K. Simon,et al.  Probability Distributions Involving Gaussian Random Variables: A Handbook for Engineers, Scientists and Mathematicians , 2006 .

[19]  G. V. Weinberg,et al.  Poisson representation and monte carlo estimation of generalized marcum Q-function , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[20]  Rong Li,et al.  Computing and Bounding the Generalized Marcum Q-Function via a Geometric Approach , 2006, 2006 IEEE International Symposium on Information Theory.

[21]  Graham V. Weinberg,et al.  APPROVED FOR PUBLIC RELEASE , 2005 .

[22]  Mohamed-Slim Alouini,et al.  On the average outage rate and average outage duration of wireless communication systems with multiple cochannel interferers , 2004, IEEE Transactions on Wireless Communications.

[23]  Annamalai Annamalai,et al.  Some integrals involving the Qm(a√x, b√x) with application to error probability analysis of diversity receivers , 2003, IEEE Trans. Veh. Technol..

[24]  Mohamed-Slim Alouini,et al.  Some new results for integrals involving the generalized Marcum Q function and their application to performance evaluation over fading channels , 2003, IEEE Trans. Wirel. Commun..

[25]  Mohamed-Slim Alouini,et al.  Largest eigenvalue of complex Wishart matrices and performance analysis of MIMO MRC systems , 2003, IEEE J. Sel. Areas Commun..

[26]  Marvin K. Simon,et al.  The Nuttall Q function - its relation to the Marcum Q function and its application in digital communication performance evaluation , 2002, IEEE Trans. Commun..

[27]  Mohamed-Slim Alouini,et al.  Closed-form formulas for the outage probability of wireless communication systems with a minimum signal power constraint , 2002, IEEE Trans. Veh. Technol..

[28]  G. Ferrari,et al.  New bounds for the Marcum Q-function , 2002, IEEE Trans. Inf. Theory.

[29]  Chintha Tellambura,et al.  Cauchy-Schwarz bound on the generalized Marcum Q-function with applications , 2001, Wirel. Commun. Mob. Comput..

[30]  Vijay K. Bhargava,et al.  A general method for calculating error probabilities over fading channels , 2005, IEEE Transactions on Communications.

[31]  Mohamed-Slim Alouini,et al.  Exponential-type bounds on the generalized Marcum Q-function with application to error probability analysis over fading channels , 2000, IEEE Trans. Commun..

[32]  Arthur H. M. Ross,et al.  Algorithm for Calculating the Noncentral Chi-Square Distribution , 1999, IEEE Trans. Inf. Theory.

[33]  Mohamed-Slim Alouini,et al.  A unified approach to the probability of error for noncoherent and differentially coherent modulations over generalized fading channels , 1998, IEEE Trans. Commun..

[34]  Mohamed-Slim Alouini,et al.  A simple single integral representation of the bivariate Rayleigh distribution , 1998, IEEE Communications Letters.

[35]  Marvin K. Simon,et al.  A new twist on the Marcum Q-function and its application , 1998, IEEE Communications Letters.

[36]  J. Boutros,et al.  On communication over fading channels , 1996, Proceedings of ICUPC - 5th International Conference on Universal Personal Communications.

[37]  Nico M. Temme,et al.  Asymptotic and numerical aspects of the noncentral chi-square distribution , 1993 .

[38]  Carl W. Helstrom,et al.  Computing the generalized Marcum Q-function , 1992, IEEE Trans. Inf. Theory.

[39]  Yu. A. Brychkov,et al.  Integrals and series , 1992 .

[40]  Alessandro Neri,et al.  Modified Q-functions and their use in detection analysis , 1991, IEEE Trans. Inf. Theory.

[41]  David A. Shnidman,et al.  The calculation of the probability of detection and the generalized Marcum Q-function , 1989, IEEE Trans. Inf. Theory.

[42]  Pierce E. Cantrell,et al.  On the calculation of the generalized Q -function via Parl's method , 1986, IEEE Trans. Inf. Theory.

[43]  J.E. Mazo,et al.  Digital communications , 1985, Proceedings of the IEEE.

[44]  David A. Shnidman,et al.  Efficient evaluation of probabilities of detection and the generalized Q-function (Corresp.) , 1976, IEEE Trans. Inf. Theory.

[45]  G. H. Robertson,et al.  Computation of the Noncentral F Distribution (CFAR)Detection , 1976, IEEE Transactions on Aerospace and Electronic Systems.

[46]  George M. Dillard,et al.  Recursive Computation of the Generalized Q Function , 1973, IEEE Transactions on Aerospace and Electronic Systems.

[47]  B. K. Ghosh,et al.  Some Monotonicity Theorems for χ2, F and T Distributions with Applications , 1973 .

[48]  Stephen S. Rappaport,et al.  Computing approximations for the generalized Q function and its complement (Corresp.) , 1971, IEEE Trans. Inf. Theory.

[49]  Harry L. Van Trees,et al.  Detection, Estimation, and Modulation Theory, Part I , 1968 .

[50]  T. Kailath,et al.  SOME USEFUL PROBABILITY DISTRIBUTIONS , 1965 .

[51]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[52]  David M. Miller,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[53]  Peter Swerling,et al.  Probability of detection for fluctuating targets , 1960, IRE Trans. Inf. Theory.

[54]  F. Tricomi Sulla funzione gamma incompleta , 1950 .

[55]  P. Patnaik THE NON-CENTRAL χ2- AND F-DISTRIBUTIONS AND THEIR APPLICATIONS , 1949 .

[56]  P. Patnaik The Non-central X^2- and F- distribution and Their Applications , 1949 .

[57]  Jess Marcum,et al.  A statistical theory of target detection by pulsed radar , 1948, IRE Trans. Inf. Theory.

[58]  W. Burnside Theory of Functions , 1899, Nature.

[59]  Marvin K. Simon,et al.  Digital Communication Techniques: Signal Design and Detection , 2008 .

[60]  Annamalai Annamalai,et al.  Some Integrals Involving the With Application to Error Probability Analysis of Diversity Receivers , 2003 .

[61]  M. Simon Probability distributions involving Gaussian random variables : a handbook for engineers and scientists , 2002 .

[62]  Feng Qi,et al.  Monotonicity Results and Inequalities for the Gamma and Incomplete Gamma Functions , 2002 .

[63]  Mohamed-Slim Alouini,et al.  A unified performance analysis of digital communication with dual selective combining diversity over correlated Rayleigh and Nakagami-m fading channels , 1999, IEEE Trans. Commun..

[64]  Carl W. Helstrom,et al.  Approximate inversion of Marcum's Q-function , 1998 .

[65]  David A. Shnidman,et al.  Two noncentral chi-square generalizations , 1996, IEEE Trans. Inf. Theory.

[66]  M. Schwartz,et al.  Communication Systems and Techniques , 1996, IEEE Communications Magazine.

[67]  R.F. Mills,et al.  A comparison of various radiometer detection models , 1996, IEEE Transactions on Aerospace and Electronic Systems.

[68]  A. P. Prudnikov,et al.  Integrals and series of elementary functions , 1981 .

[69]  Steen Parl,et al.  A new method of calculating the generalized Q function (Corresp.) , 1980, IEEE Trans. Inf. Theory.

[70]  David A. Shnidman,et al.  Efficient Evaluation of Probabilities of Detection and the Generalized &-Function , 1976 .

[71]  Albert H. Nuttall,et al.  Some integrals involving the QM function (Corresp.) , 1975, IEEE Trans. Inf. Theory.

[72]  A. G. Greenhill,et al.  Handbook of Mathematical Functions with Formulas, Graphs, , 1971 .

[73]  G. H. Robertson Computation of the noncentral chi-square distribution , 1969 .

[74]  Van Trees,et al.  Detection, Estimation, and Modulation Theory. Part 1 - Detection, Estimation, and Linear Modulation Theory. , 1968 .

[75]  C. Helstrom,et al.  Statistical theory of signal detection , 1968 .