Actuator-Work Concepts Applied to Morphing and Conventional Aerodynamic Control Devices

[1]  Fernando Martini Catalano,et al.  Drag optimization for a transport aircraft mission adaptive wing , 2000 .

[2]  Hans Peter Monner,et al.  Realization of an optimized wing camber by using formvariable flap structures , 2001 .

[3]  J. Szodruch,et al.  The influence of camber variation on the aerodynamics of civil transport aircraft , 1985 .

[4]  I. Waaland Technology in the lives of an aircraft designer , 1991 .

[5]  G. Miller An active flexible wing multi-disciplinary design optimization method , 1994 .

[6]  V. Tucker,et al.  Aerodynamics and Energetics of Vertebrate Fliers , 1975 .

[7]  Reinhard Blickhan,et al.  Energy Storage by Elastic Mechanisms in the Tail of Large Swimmers—a Re-evaluation , 1994 .

[8]  Fernando Martini Catalano,et al.  Aerodynamic optimization study of a mission adaptive wing for transport aircraft , 1997 .

[9]  K Schmidt-Nielsen,et al.  Locomotion: energy cost of swimming, flying, and running. , 1972, Science.

[10]  Gregory William Pettit Model to Evaluate the Aerodynamic Energy Requirements of Active Materials in Morphing Wings , 2001 .

[11]  Terrence A. Weisshaar,et al.  Integrated Wing Design with Adaptive Control Surfaces , 2001 .

[12]  David W. Nelson,et al.  Determination of the aerodynamic characteristics of the mission adaptive wing , 1988 .

[13]  R. Kress Variable sweep wing design , 1983 .

[14]  B. Krogull,et al.  Design for Air Combat , 1972 .

[15]  Stephen Smith,et al.  AFTI/F-111 Mission Adaptive Wing flight research program , 1988 .

[16]  Raymond M. Kolonay,et al.  Multiple control surface utilization in active aeroelastic wing technology , 1997 .

[17]  Rakesh K. Kapania,et al.  Computation of Actuation Power Requirements for Smart Wings with Morphing Airfoils , 2002 .

[18]  J. J. Spillman,et al.  The use of variable camber to reduce drag, weight and costs of transport aircraft , 1992, The Aeronautical Journal (1968).

[19]  Anna-Maria Rivas McGowan,et al.  The Aircraft Morphing Program , 1998 .

[20]  B. C. Abbott,et al.  The physiological cost of negative work , 1952, The Journal of physiology.

[21]  Fernando Martini Catalano,et al.  Drag optimization for transport aircraft Mission Adaptive Wing , 2003 .

[22]  I. H. Abbott,et al.  Theory of Wing Sections , 1959 .

[23]  Daniel J. Inman,et al.  A model to compare the flight control energy requirements of morphing and conventionally actuated wings , 2003 .

[24]  W. B. Herbst,et al.  Future fighter technologies , 1980 .

[25]  E Stanewsky,et al.  Adaptive wing and flow control technology , 2001 .

[26]  V. Tucker,et al.  Aerodynamics of Gliding Flight in a Falcon and Other Birds , 1970 .

[27]  William A. Crossley,et al.  MORPHING AIRFOIL SHAPE CHANGE OPTIMIZATION WITH MINIMUM ACTUATOR ENERGY AS AN OBJECTIVE , 2002 .

[28]  W. B. Herbst,et al.  Dynamics of Air Combat , 1983 .

[29]  H Julian Allen General theory of airfoil sections having arbitrary shape or pressure distribution , 1945 .

[30]  Brian Sanders,et al.  Synthesis of a Variable Geometry Trailing Edge Control Surface , 2003 .

[31]  Brian Sanders,et al.  MODELLING AND SENSITIVITY ANALYSIS OF A VARIABLE GEOMETRY TRAILING EDGE CONTROL SURFACE , 2003 .

[32]  E. T. T. Raymond,et al.  Aircraft Flight Control Actuation System Design , 1993 .

[33]  M. Munk General theory of thin wing sections , 1923 .

[34]  Fred E. C. Culick The Wright Brothers: First Aeronautical Engineers and Test Pilots , 2003 .

[35]  Brian Sanders,et al.  Aerodynamic and Aeroelastic Characteristics of Wings with Conformal Control Surfaces for Morphing Aircraft , 2003 .

[36]  Egon Stanewsky,et al.  Aerodynamic benefits of adaptive wing technology , 2000 .

[37]  Francis R. Smith,et al.  AFTI/F-111 Performance Flight Test Summary , 1987 .

[38]  Robert M Pinkerton Calculated and measured pressure distributions over the midspan section of the NACA 4412 airfoil , 1936 .