Salmonella phages and prophages--genomics and practical aspects.

[1]  M. Chakravorty,et al.  Mapping of additional restriction enzyme cleavage sites on bacteriophage MB78 genome , 1998, Journal of Biosciences.

[2]  Saeed A. Khan,et al.  Replication, maturation and physical mapping of bacteriophage MB78 genome , 1991, Journal of Biosciences.

[3]  J. King,et al.  Structure of epsilon15 bacteriophage reveals genome organization and DNA packaging/injection apparatus , 2006, Nature.

[4]  J. Lipuma,et al.  Divergence and Mosaicism among Virulent Soil Phages of the Burkholderia cepacia Complex , 2006, Journal of bacteriology.

[5]  F. Angulo,et al.  Economic cost of illness due to Escherichia coli O157 infections in the United States. , 2005, Journal of food protection.

[6]  Thomas D. Schneider,et al.  Information theory based T7-like promoter models: classification of bacteriophages and differential evolution of promoters and their polymerases , 2005, Nucleic acids research.

[7]  Kristin N. Parent,et al.  Electrostatic interactions govern both nucleation and elongation during phage P22 procapsid assembly. , 2005, Virology.

[8]  Liang Tang,et al.  Three-dimensional structure of the bacteriophage P22 tail machine , 2005, The EMBO journal.

[9]  S. Casjens,et al.  Molecular genetics of bacteriophage P22 scaffolding protein's functional domains. , 2005, Journal of molecular biology.

[10]  P. Prevelige,et al.  Domain study of bacteriophage p22 coat protein and characterization of the capsid lattice transformation by hydrogen/deuterium exchange. , 2005, Journal of molecular biology.

[11]  S. Casjens,et al.  Nucleotide Sequence of the Head Assembly Gene Cluster of Bacteriophage L and Decoration Protein Characterization , 2005, Journal of bacteriology.

[12]  E. Boyd,et al.  Genomic Comparisons of Salmonella enterica Serovar Dublin, Agona, and Typhimurium Strains Recently Isolated from Milk Filters and Bovine Samples from Ireland, Using a Salmonella Microarray , 2005, Applied and Environmental Microbiology.

[13]  J. Butler,et al.  Bacteriophage P22 Tail Accessory Factor GP26 Is a Long Triple-stranded Coiled-coil* , 2005, Journal of Biological Chemistry.

[14]  S. Casjens,et al.  The Generalized Transducing Salmonella Bacteriophage ES18: Complete Genome Sequence and DNA Packaging Strategy , 2005, Journal of bacteriology.

[15]  L. Bossi,et al.  Prophage Arsenal of Salmonella enterica Serovar Typhimurium , 2005 .

[16]  S. Casjens,et al.  DNA Packaging by Bacteriophage P22 , 2005 .

[17]  D. Hambright,et al.  Restriction endonuclease and genetic mapping studies indicate that the vegetative genome of the temperate, salmonella-specific bacteriophage, Epsilon 15, is circularly-permuted , 2005, Archives of Virology.

[18]  J. Bockemühl,et al.  Supplement 2002 (no. 46) to the Kauffmann-White scheme. , 2004, Research in microbiology.

[19]  Michael William Heuzenroeder,et al.  ST64B is a defective bacteriophage in Salmonella enterica serovar Typhimurium DT64 that encodes a functional immunity region capable of mediating phage-type conversion. , 2004, International journal of medical microbiology : IJMM.

[20]  R. Villafane,et al.  Initial interaction of the P22 phage with the Salmonella typhimurium surface. , 2004, Puerto Rico health sciences journal.

[21]  Sudhir Kumar,et al.  MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment , 2004, Briefings Bioinform..

[22]  S. Casjens,et al.  The chromosome of Shigella flexneri bacteriophage Sf6: complete nucleotide sequence, genetic mosaicism, and DNA packaging. , 2004, Journal of molecular biology.

[23]  J. Wain,et al.  The role of prophage-like elements in the diversity of Salmonella enterica serovars. , 2004, Journal of molecular biology.

[24]  S. Nair,et al.  Salmonella enterica Serovar Typhi Strains from Which SPI7, a 134-Kilobase Island with Genes for Vi Exopolysaccharide and Other Functions, Has Been Deleted , 2004, Journal of bacteriology.

[25]  S. Makino,et al.  Molecular Characterization of a Prophage of Salmonella enterica Serotype Typhimurium DT104 , 2004, Journal of Clinical Microbiology.

[26]  J. Lawrence,et al.  Complete Genomic Sequence of the Virulent Salmonella Bacteriophage SP6 , 2004, Journal of bacteriology.

[27]  Julian Parkhill,et al.  Genomic and Genetic Analysis of Bordetella Bacteriophages Encoding Reverse Transcriptase-Mediated Tropism-Switching Cassettes , 2004, Journal of bacteriology.

[28]  J. Rush,et al.  Genomic analysis of bacteriophages SP6 and K1-5, an estranged subgroup of the T7 supergroup. , 2004, Journal of molecular biology.

[29]  H. Schmieger Phage P22-mutants with increased or decreased transduction abilities , 2004, Molecular and General Genetics MGG.

[30]  Michael William Heuzenroeder,et al.  Bacteriophage ST64B, a Genetic Mosaic of Genes from Diverse Sources Isolated from Salmonella enterica Serovar Typhimurium DT 64 , 2003, Journal of bacteriology.

[31]  W. Hardt,et al.  The SopEΦ Phage Integrates into the ssrA Gene of Salmonella enterica Serovar Typhimurium A36 and Is Closely Related to the Fels-2 Prophage , 2003, Journal of bacteriology.

[32]  W. Demczuk,et al.  Phage-Based Typing Scheme for Salmonella enterica Serovar Heidelberg, a Causative Agent of Food Poisonings in Canada , 2003, Journal of Clinical Microbiology.

[33]  C. Teschke,et al.  Folding of phage P22 coat protein monomers: kinetic and thermodynamic properties. , 2003, Virology.

[34]  V. Fischetti,et al.  In Vivo Lysogenic Conversion of Tox−Streptococcus pyogenes to Tox+ with Lysogenic Streptococci or Free Phage , 2003, Infection and Immunity.

[35]  Michael William Heuzenroeder,et al.  Genomic Structure of the Salmonella enterica Serovar Typhimurium DT 64 Bacteriophage ST64T: Evidence for Modular Genetic Architecture , 2003, Journal of bacteriology.

[36]  Forest Rohwer,et al.  Global Phage Diversity , 2003, Cell.

[37]  Graham F. Hatfull,et al.  Corrected Sequence of the Bacteriophage P22 Genome , 2003, Journal of bacteriology.

[38]  J. Whichard,et al.  Suppression of Salmonella growth by wild-type and large-plaque variants of bacteriophage Felix O1 in liquid culture and on chicken frankfurters. , 2003, Journal of food protection.

[39]  A. Hensel,et al.  Bacterial ghosts as vaccine candidates for veterinary applications. , 2002, Journal of controlled release : official journal of the Controlled Release Society.

[40]  James M. Slauch,et al.  Identification of GtgE, a Novel Virulence Factor Encoded on the Gifsy-2 Bacteriophage of Salmonella enterica Serovar Typhimurium , 2002, Journal of bacteriology.

[41]  S. Casjens,et al.  The DNA site utilized by bacteriophage P22 for initiation of DNA packaging , 2002, Molecular microbiology.

[42]  Raymond Schuch,et al.  A bacteriolytic agent that detects and kills Bacillus anthracis , 2002, Nature.

[43]  R. Edwards,et al.  The Phage Proteomic Tree: a Genome-Based Taxonomy for Phage , 2002, Journal of bacteriology.

[44]  John E. Johnson,et al.  Preliminary crystallographic analysis of the bacteriophage P22 portal protein. , 2002, Journal of structural biology.

[45]  Joseph Wyse,et al.  Detection of bacteria using foreign DNA: the development of a bacteriophage reagent for Salmonella. , 2002, International journal of food microbiology.

[46]  Ilana Cohen,et al.  A bacteriophage reagent for Salmonella: molecular studies on Felix 01. , 2002, International journal of food microbiology.

[47]  H. Schmidt,et al.  The Nucleotide Sequence of Shiga Toxin (Stx) 2e-Encoding Phage φP27 Is Not Related to Other Stx Phage Genomes, but the Modular Genetic Structure Is Conserved , 2002, Infection and Immunity.

[48]  D. Angeles,et al.  Complete Genomic Sequence of SfV, a Serotype-Converting Temperate Bacteriophage of Shigellaflexneri , 2002, Journal of bacteriology.

[49]  Roger W. Hendrix,et al.  Phage Genomics Small Is Beautiful , 2002, Cell.

[50]  P. Taylor,et al.  Structure of Ocr from bacteriophage T7, a protein that mimics B-form DNA. , 2002, Molecular cell.

[51]  Michael William Heuzenroeder,et al.  Temperate phages in Salmonella enterica serovar Typhimurium: implications for epidemiology. , 2002, International journal of medical microbiology : IJMM.

[52]  Raja Mazumder,et al.  CoreGenes: A computational tool for identifying and cataloging "core" genes in a set of small genomes , 2002, BMC Bioinformatics.

[53]  P. Taylor,et al.  Crystallization and preliminary X-ray analysis of ocr, the product of gene 0.3 of bacteriophage T7. , 2001, Acta crystallographica. Section D, Biological crystallography.

[54]  R. Wilson,et al.  Complete genome sequence of Salmonella enterica serovar Typhimurium LT2 , 2001, Nature.

[55]  W. Inwood,et al.  Nucleotide sequence of coliphage HK620 and the evolution of lambdoid phages. , 2001, Journal of molecular biology.

[56]  A. Sulakvelidze,et al.  Examination of bacteriophage as a biocontrol method for salmonella on fresh-cut fruit: a model study. , 2001, Journal of food protection.

[57]  V. Fischetti Phage antibacterials make a comeback , 2001, Nature Biotechnology.

[58]  C. E. Caldon,et al.  Evolution of a molecular switch: universal bacterial GTPases regulate ribosome function , 2001, Molecular microbiology.

[59]  V. Braun,et al.  FhuA Barrel-Cork Hybrids Are Active Transporters and Receptors , 2001, Journal of bacteriology.

[60]  I. Molineux No syringes please, ejection of phage T7 DNA from the virion is enzyme driven , 2001, Molecular microbiology.

[61]  V. Fischetti,et al.  Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[62]  L. Burrows,et al.  Three‐component‐mediated serotype conversion in Pseudomonas aeruginosa by bacteriophage D3 , 2001, Molecular microbiology.

[63]  J. Slauch,et al.  OmpC Is the Receptor for Gifsy-1 and Gifsy-2 Bacteriophages of Salmonella , 2001, Journal of bacteriology.

[64]  M. Dreyfus,et al.  High-level autoenhanced expression of a single-copy gene in Escherichia coli: overproduction of bacteriophage T7 protein kinase directed by T7 late genetic elements. , 2001, Gene.

[65]  L. Bossi,et al.  Variable assortment of prophages provides a transferable repertoire of pathogenic determinants in Salmonella , 2001, Molecular microbiology.

[66]  A. Kropinski,et al.  Sequence of the Genome of SalmonellaBacteriophage P22 , 2000, Journal of bacteriology.

[67]  A. Kropinski Sequence of the Genome of the Temperate, Serotype-Converting,Pseudomonas aeruginosa Bacteriophage D3 , 2000, Journal of bacteriology.

[68]  R. Gumport,et al.  DNA binding properties in vivo and target recognition domain sequence alignment analyses of wild-type and mutant RsrI [N6-adenine] DNA methyltransferases. , 2000, Nucleic acids research.

[69]  G. Stent,et al.  Phage and the Origins of Molecular Biology , 1966 .

[70]  M. Rudolph,et al.  Biochemical Analysis of SopE from Salmonella typhimurium, a Highly Efficient Guanosine Nucleotide Exchange Factor for RhoGTPases* , 1999, The Journal of Biological Chemistry.

[71]  W. Rabsch,et al.  Isolation of a temperate bacteriophage encoding the type III effector protein SopE from an epidemic Salmonella typhimurium strain. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[72]  J. Gardner,et al.  Site-Specific Recombination of Bacteriophage P22 Does Not Require Integration Host Factor , 1999, Journal of bacteriology.

[73]  V. Magrini,et al.  Site-Specific Recombination of TemperateMyxococcus xanthus Phage Mx8: Regulation of Integrase Activity by Reversible, Covalent Modification , 1999, Journal of bacteriology.

[74]  L. McCaig,et al.  Food-related illness and death in the United States. , 1999, Emerging infectious diseases.

[75]  H. Schmieger,et al.  Transduction of multiple drug resistance of Salmonella enterica serovar typhimurium DT104. , 1999, FEMS microbiology letters.

[76]  H. Ackermann Tailed Bacteriophages: The Order Caudovirales , 1998, Advances in Virus Research.

[77]  Li-Mei Chen,et al.  Genetic Analysis, Using P22 Challenge Phage, of the Nitrogen Activator Protein DNA-Binding Site in the Klebsiella aerogenes put Operon , 1998, Journal of bacteriology.

[78]  L. Bossi,et al.  Unsuspected prophage‐like elements in Salmonella typhimurium , 1997, Molecular microbiology.

[79]  T. Hoover,et al.  Genetic analysis of the Rhizobium meliloti nifH promoter, using the P22 challenge phage system , 1997, Journal of bacteriology.

[80]  S. Steinbacher,et al.  Interaction of Salmonella Phage P22 with Its O-Antigen Receptor Studied by X-Ray Crystallography , 1997, Biological chemistry.

[81]  W. Demczuk,et al.  Drug resistance, plasmids, biotypes and susceptibility to bacteriophages of Salmonella isolated from poultry in Canada. , 1996, International journal of food microbiology.

[82]  Ronald K. Taylor,et al.  Genetic footprint of the ToxR‐binding site in the promoter for cholera toxin , 1996, Molecular microbiology.

[83]  Harma A. Karsens,et al.  Sequence analysis and molecular characterization of the temperate lactococcal bacteriophage r1t , 1996, Molecular microbiology.

[84]  R. Villafane,et al.  Identification of the tailspike protein from the Salmonella newington phage epsilon 34 and partial characterization of its phage-associated properties. , 1995, Journal of structural biology.

[85]  B. Dreiseikelmann,et al.  The superinfection exclusion gene (sieA) of bacteriophage P22: identification and overexpression of the gene and localization of the gene product , 1995, Journal of bacteriology.

[86]  E. Robertson,et al.  Phosphorylation of elongation factor G and ribosomal protein S6 in bacteriophage T7‐infected Escherichia coli , 1994, Molecular microbiology.

[87]  H. Sugiyama,et al.  Transfer of neurotoxigenicity from Clostridium butyricum to a nontoxigenic Clostridium botulinum type E-like strain , 1993, Applied and environmental microbiology.

[88]  K. Ranade,et al.  Superinfection exclusion (sieB) genes of bacteriophages P22 and lambda , 1993, Journal of bacteriology.

[89]  N. Smith,et al.  Molecular evolutionary genetics of the cattle-adapted serovar Salmonella dublin , 1992, Journal of bacteriology.

[90]  B. Goldman,et al.  Rapid mapping in Salmonella typhimurium with Mud-P22 prophages , 1992, Journal of bacteriology.

[91]  A. Zuccarelli,et al.  Salmonella phage PSP3, another member of the P2-like phage group. , 1991, Virology.

[92]  P. Barrow,et al.  The activity in the chicken alimentary tract of bacteriophages lytic for Salmonella typhimurium. , 1991, Research in microbiology.

[93]  J. W. Little Mechanism of specific LexA cleavage: autodigestion and the role of RecA coprotease. , 1991, Biochimie.

[94]  H. Lior,et al.  Distribution of Salmonella enteritidis phage types in Canada , 1991, Epidemiology and Infection.

[95]  J. Petri,et al.  Isolation of fragments with pac function for phage P22 from phage LP7 DNA and comparison of packaging gene 3 sequences. , 1990, Gene.

[96]  M. Kutateladze,et al.  The virulent bacteriophage IRA of Salmonella typhimurium: Cloning of phage genes which are potentially lethal for the host cell , 1990, Journal of basic microbiology.

[97]  B. Rowe,et al.  Acquisition of a drug resistance plasmid converts Salmonella enteritidis phage type 4 to phage type 24 , 1989, Epidemiology and Infection.

[98]  B. Rowe,et al.  Large outbreak of food poisoning caused by Salmonella typhimurium definitive type 49 in mayonnaise. , 1989, BMJ.

[99]  P. Youderian,et al.  Packaging specific segments of the Salmonella chromosome with locked-in Mud-P22 prophages. , 1988, Genetics.

[100]  B. Rowe,et al.  A phage-typing scheme for Salmonella enteritidis , 1987, Epidemiology and Infection.

[101]  H. Ackermann,et al.  Natural groups of bacteriophages , 1987 .

[102]  M. Dabrowski,et al.  Results of bacteriophage treatment of suppurative bacterial infections in the years 1981-1986. , 1987, Archivum immunologiae et therapiae experimentalis.

[103]  R. McDonald,et al.  Genomic structure of phage F22, a hybrid between serologically and morphologically unrelated Salmonella typhimurium bacteriophages P22 and Fels 2. , 1986, Genetical research.

[104]  M. Verma,et al.  Hybrid between temperate phage P22 and virulent phage MB78. , 1985, Biochemical and biophysical research communications.

[105]  M. Verma,et al.  Bacteriophage P22 helps bacteriophage MB78 to overcome the transcription inhibition in rifampicin resistant mutant of Salmonella typhimurium. , 1985, Biochemistry international.

[106]  E. Méndez,et al.  Biochemical characterization of a murein hydrolase induced by bacteriophage Dp-1 in Streptococcus pneumoniae: comparative study between bacteriophage-associated lysin and the host amidase , 1984, Journal of bacteriology.

[107]  F. Studier,et al.  Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. , 1983, Journal of molecular biology.

[108]  A. Tomasz,et al.  A phage-associated murein hydrolase in Streptococcus pneumoniae infected with bacteriophage Dp-1. , 1983, Journal of general microbiology.

[109]  D. Hirsh,et al.  Rapid Detection of Salmonella spp. by Using Felix-O1 Bacteriophage and High-Performance Liquid Chromatography , 1983, Applied and environmental microbiology.

[110]  M. Chakravorty,et al.  MB78, a virulent bacteriophage of Salmonella typhimurium , 1982, Journal of virology.

[111]  D. Botstein,et al.  Advanced Bacterial Genetics: A Manual for Genetic Engineering , 1980 .

[112]  Jeffrey W. Roberts,et al.  E. coli recA protein-directed cleavage of phage λ repressor requires polynucleotide , 1980, Nature.

[113]  A. Wright,et al.  Studies on the initial interactions of bacteriophage ϵ15 with its host cell, Salmonella anatum , 1979 .

[114]  A. Lindberg,et al.  Lipopolysaccharide core defects in Salmonella typhimurium mutants which are resistant to Felix O phage but retain smooth character. , 1978, Journal of general microbiology.

[115]  N. Yamamoto A generalized transducing salmonella phage ES18 can recombine with a serologically unrelated phage Fels 1. , 1978, The Journal of general virology.

[116]  D. Mount,et al.  Inactivation and proteolytic cleavage of phage lambda repressor in vitro in an ATP-dependent reaction. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[117]  E. S. Anderson,et al.  Bacteriophage-typing designations of Salmonella typhimurium , 1977, Journal of Hygiene.

[118]  D. Duckworth "Who discovered bacteriophage?". , 1976, Bacteriological reviews.

[119]  K. Rundell,et al.  Membrane-associated nucleotide sugar reactions: influence of mutations affecting lipopolysaccharide on the first enzyme of O-antigen synthesis , 1975, Journal of bacteriology.

[120]  L. Minor,et al.  Sensitivity to bacteriophage ES18 of strains of Salm. dublin. Salm. enteritidis and Salm. blegdam and related serotypes. , 1975 .

[121]  A. Wright,et al.  Studies on the mechanism of phage adsorption: Interaction between phage ϵ15 and its cellular receptor , 1973 .

[122]  H. Uetake,et al.  In vitro interaction between phage and receptor lipopolysaccharide: a novel glycosidase associated with Salmonella phage 15 . , 1973, Virology.

[123]  D. Botstein,et al.  Generalized transduction by phage P22 in Salmonella typhimurium. I. Molecular origin of transducing DNA. , 1972, Journal of molecular biology.

[124]  J. Vieu,et al.  [Supplementary lysotyping of Vi-positive strains of Salmonella typhi, insensitive to all the adapted preparations of Craigie's Vi II phage (group I+IV)]. , 1970, Archives roumaines de pathologie experimentales et de microbiologie.

[125]  T. Kuo,et al.  ES18, a general transducing phage for smooth and nonsmooth Salmonella typhimurium. , 1970, Virology.

[126]  N. Yamamoto Genetic evolution of bacteriophage. I. Hybrids between unrelated bacteriophages P22 and Fels 2. , 1969, Proceedings of the National Academy of Sciences of the United States of America.

[127]  L. Kallings Sensitivity of various salmonella strains to felix 0-1 phage. , 2009, Acta pathologica et microbiologica Scandinavica.

[128]  P. Robbins,et al.  Mechanism of ϵ15 conversion studied with bacteriophage mutants , 1967 .

[129]  R. Losick,et al.  Mechanism of ϵ15 conversion studied with a bacterial mutant , 1967 .

[130]  N. Yamamoto The origin of bacteriophage P221. , 1967, Virology.

[131]  P. Robbins,et al.  ENZYMATIC AND KINETIC STUDIES ON THE MECHANISM OF O-ANTIGEN CONVERSION BY BACTERIOPHAGE EPSILON-15. , 1965, The Journal of biological chemistry.

[132]  P. Robbins,et al.  Chemical and Macromolecular Structure of O-Antigens from Salmonella anatum Strains Carrying Mutants of Bacteriophage ε15 , 1965 .

[133]  E. S. Anderson,et al.  The Phage Typing of Salmonellae other Than S. Typhi , 1964 .

[134]  P. Robbins,et al.  ANALYSIS OF THE SEROLOGIC DETERMINANT GROUPS OF THE SALMONELLA E-GROUP O-ANTIGENS. , 1963, Biochemistry.

[135]  P. Robbins,et al.  Studies on the chemical basis of the phage conversion of O-antigens in the E-group Salmonellae. , 1962, Biochemistry.

[136]  H. Uetake,et al.  Mutants of Salmonella phage e 15 with abnormal conversion properties. , 1959, Virology.

[137]  B. R. Callow A new phage-typing scheme for Salmonella typhi-murium , 1959, Journal of Hygiene.

[138]  S. Luria,et al.  Conversion of somatic antigens in Salmonella by phage infection leading to lysis or lysogeny. , 1958, Virology.

[139]  E. S. Anderson,et al.  Bacteriophage typing of enteric pathogens and staphylococci and its use in epidemiology. , 1956, Journal of clinical pathology.

[140]  H. Uetake,et al.  THE RELATIONSHIP OF BACTERIOPHAGE TO ANTIGENIC CHANGES IN GROUP E SALMONELLAS , 1955, Journal of bacteriology.

[141]  S. Iseki,et al.  Induction of Somatic Antigen 1 by Bacteriophage in Salmonella B Group , 1955 .

[142]  J. Lederberg,et al.  GENETIC EXCHANGE IN SALMONELLA , 1952, Journal of bacteriology.

[143]  G. Lumb,et al.  Hypoplasia of the exocrine tissue of the pancreas. , 1952, The Journal of pathology and bacteriology.

[144]  J. Boyd The symbiotic bacteriophages of Salmonella typhi-murium. , 1950, The Journal of pathology and bacteriology.

[145]  Desranleau Jm Progress in the treatment of typhoid fever with Vi bacteriophages. , 1949 .

[146]  Desranleau Jm The treatment of typhoid fever by the use of Vi antityphoid bacteriophages; a preliminary report. , 1948 .

[147]  A. G. Bower,et al.  TREATMENT OF TYPHOID FEVER WITH TYPE SPECIFIC BACTERIOPHAGE: Preliminary Report , 1946 .

[148]  A. Felix,et al.  TYPING OF PARATYPHOID B BACILLI BY MEANS OF VI BACTERIOPHAGEA Report to the Medical Research Council , 1943 .

[149]  A. Felix,et al.  Typing of Paratyphoid B Bacilli by Vi Bacteriophage* , 1943, British medical journal.

[150]  W. E. Ward Protective Action of Vi Bacteriophage in Eberthella Typhi Infections in Mice , 1943 .

[151]  R. T. Fisk Protective Action of Typhoid Phage on Experimental Typhoid Infection in Mice , 1938 .

[152]  J. Craigie,et al.  The Demonstration of Types of B. typhosus by Means of Preparations of Type II Vi Phage. 2. The Stability and Epidemiologieal Significance of V Form Types of B. typhosus. , 1938 .

[153]  J. Craigie,et al.  The Demonstration of Types of B. typhosus by Means of Preparations of Type II Vi Phage. I. Principles and Technique. , 1938 .

[154]  J. Wilson,et al.  Further Observations on the Rôle of the Twort-d'Herelle Phenomenon in the Epidemic Spread of Mouse-typhoid. , 1925, Epidemiology and Infection.

[155]  J. Wilson,et al.  The Rôle of the Twort-d'Herelle Phenomenon in Epidemics of Mouse-Typhoid , 1925, Journal of Hygiene.