Density functional theory with dispersion corrections for supramolecular structures, aggregates, and complexes of (bio)organic molecules.

Kohn-Sham density functional theory (KS-DFT) is nowadays the most widely used quantum chemical method for electronic structure calculations in chemistry and physics. Its further application in e.g. supramolecular chemistry or biochemistry has mainly been hampered by the inability of almost all current density functionals to describe the ubiquitous attractive long-range van der Waals (dispersion) interactions. We review here methods to overcome this defect, and describe in detail a very successful correction that is based on damped -C(6).R(-6) potentials (DFT-D). As examples we consider the non-covalent inter- and intra-molecular interactions in unsaturated organic molecules (so-called pi-pi stacking in benzenes and dyes), in biologically relevant systems (nucleic acid bases/pairs, proteins, and 'folding' models), between fluorinated molecules, between curved aromatics (corannulene and carbon nanotubes) and small molecules, and for the encapsulation of methane in water clusters. In selected cases we partition the interaction energies into the most relevant contributions from exchange-repulsion, electrostatics, and dispersion in order to provide qualitative insight into the binding character.

[1]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[2]  S. Grimme,et al.  Density functional theory including dispersion corrections for intermolecular interactions in a large benchmark set of biologically relevant molecules. , 2006, Physical chemistry chemical physics : PCCP.

[3]  Sheng Yao,et al.  Fluorescent H-aggregates of merocyanine dyes. , 2006, Angewandte Chemie.

[4]  Edward A. Jackson,et al.  Corannulene: A Preference for exo-Metal Binding. X-ray Structural Characterization of [Ru2(O2CCF3)2(CO)4·(η2-C20H10)2] , 2006 .

[5]  R. Bartlett,et al.  Ab initio correlation functionals from second-order perturbation theory. , 2006, The Journal of chemical physics.

[6]  R J Needs,et al.  Quantum Monte Carlo calculations of the dissociation energy of the water dimer. , 2006, The Journal of chemical physics.

[7]  Hans-Joachim Werner,et al.  Calculation of intermolecular interactions in the benzene dimer using coupled-cluster and local electron correlation methods. , 2006, Physical chemistry chemical physics : PCCP.

[8]  J. Sauer,et al.  Treating dispersion effects in extended systems by hybrid MP2:DFT calculations--protonation of isobutene in zeolite ferrierite. , 2006, Physical chemistry chemical physics : PCCP.

[9]  Krzysztof Szalewicz,et al.  Potential energy surface for the benzene dimer and perturbational analysis of π-π interactions , 2006 .

[10]  G. Cinacchi Comment on "Coarse-grained interaction potentials for polyaromatic hydrocarbons" [J. Chem. Phys. 124, 054307 (2006)]. , 2006, The Journal of chemical physics.

[11]  C. David Sherrill,et al.  High-Accuracy Quantum Mechanical Studies of π−π Interactions in Benzene Dimers , 2006 .

[12]  S. Tsuzuki Interactions with Aromatic Rings , 2006 .

[13]  S. Grimme Scheinbar einfache stereo‐elektronische Effekte in Alkan‐Isomeren und ihre Auswirkungen für die Kohn‐Sham‐Dichtefunktionaltheorie , 2006 .

[14]  Martin Head-Gordon,et al.  A fast correlated electronic structure method for computing interaction energies of large van der Waals complexes applied to the fullerene-porphyrin dimer. , 2006, Physical chemistry chemical physics : PCCP.

[15]  A. Becke,et al.  A post-Hartree-Fock model of intermolecular interactions: inclusion of higher-order corrections. , 2006, The Journal of chemical physics.

[16]  A. Tkatchenko,et al.  Adsorption of Ar on graphite using London dispersion forces corrected Kohn-Sham density functional theory , 2006 .

[17]  Jirí Cerný,et al.  Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. , 2006, Physical chemistry chemical physics : PCCP.

[18]  Jae Shin Lee,et al.  Accurate ab initio binding energies of the benzene dimer. , 2006, The journal of physical chemistry. A.

[19]  Donald G Truhlar,et al.  Comparative DFT study of van der Waals complexes: rare-gas dimers, alkaline-earth dimers, zinc dimer, and zinc-rare-gas dimers. , 2006, The journal of physical chemistry. A.

[20]  Kazumasa Honda,et al.  Estimated MP2 and CCSD(T) interaction energies of n-alkane dimers at the basis set limit: comparison of the methods of Helgaker et al. and Feller. , 2006, The Journal of chemical physics.

[21]  James A. Platts,et al.  Hybrid density functional theory for π‐stacking interactions: Application to benzenes, pyridines, and DNA bases , 2006, J. Comput. Chem..

[22]  Evert Jan Baerends,et al.  A simple natural orbital mechanism of "pure" van der Waals interaction in the lowest excited triplet state of the hydrogen molecule. , 2006, The Journal of chemical physics.

[23]  Donald G Truhlar,et al.  Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions. , 2006, Journal of chemical theory and computation.

[24]  S. Grimme Semiempirical hybrid density functional with perturbative second-order correlation. , 2006, The Journal of chemical physics.

[25]  Stefan Grimme,et al.  The importance of inter- and intramolecular van der Waals interactions in organic reactions: the dimerization of anthracene revisited. , 2006, Angewandte Chemie.

[26]  A. Becke,et al.  Exchange-hole dipole moment and the dispersion interaction: high-order dispersion coefficients. , 2006, The Journal of chemical physics.

[27]  O. A. von Lilienfeld,et al.  Coarse-grained interaction potentials for polyaromatic hydrocarbons. , 2005, The Journal of chemical physics.

[28]  D. Langreth,et al.  Interaction energies of monosubstituted benzene dimers via nonlocal density functional theory. , 2005, The Journal of chemical physics.

[29]  Binding energies in benzene dimers: Nonlocal density functional calculations. , 2005, The Journal of chemical physics.

[30]  J. Ángyán,et al.  Potential curves for alkaline-earth dimers by density functional theory with long-range correlation corrections , 2005 .

[31]  Adrienn Ruzsinszky,et al.  Binding energy curves from nonempirical density functionals II. van der Waals bonds in rare-gas and alkaline-earth diatomics. , 2005, The journal of physical chemistry. A.

[32]  H. Werner,et al.  A short-range gradient-corrected density functional in long-range coupled-cluster calculations for rare gas dimers. , 2005, Physical chemistry chemical physics : PCCP.

[33]  S. Grimme,et al.  Weak intermolecular interactions calculated with diffusion Monte Carlo. , 2005, The Journal of chemical physics.

[34]  A. Becke,et al.  A density-functional model of the dispersion interaction. , 2005, The Journal of chemical physics.

[35]  Stefan Grimme,et al.  Van der Waals complexes of polar aromatic molecules: unexpected structures for dimers of azulene. , 2005, Journal of the American Chemical Society.

[36]  Stefan Grimme,et al.  A Theoretical Investigation of the Geometries and Binding Energies of Molecular Tweezer and Clip Host-Guest Systems. , 2005, Journal of chemical theory and computation.

[37]  Kimihiko Hirao,et al.  A density-functional study on pi-aromatic interaction: benzene dimer and naphthalene dimer. , 2005, The Journal of chemical physics.

[38]  Stefan Grimme,et al.  Van der Waals interactions in aromatic systems: structure and energetics of dimers and trimers of pyridine. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[39]  Joachim Sauer,et al.  Protonated isobutene in zeolites: tert-butyl cation or alkoxide? , 2005, Angewandte Chemie.

[40]  A. Becke,et al.  A post-Hartree-Fock model of intermolecular interactions. , 2005, The Journal of chemical physics.

[41]  Donald G Truhlar,et al.  How well can new-generation density functional methods describe stacking interactions in biological systems? , 2005, Physical chemistry chemical physics : PCCP.

[42]  O. A. von Lilienfeld,et al.  Performance of optimized atom-centered potentials for weakly bonded systems using density functional theory , 2005 .

[43]  Andreas Savin,et al.  van der Waals forces in density functional theory: Perturbational long-range electron-interaction corrections , 2005, cond-mat/0505062.

[44]  Fernando Flores,et al.  Van der Waals forces in the local-orbital Density Functional Theory , 2005 .

[45]  T. Van Voorhis,et al.  Fluctuation-dissipation theorem density-functional theory. , 2005, The Journal of chemical physics.

[46]  Donald G Truhlar,et al.  Multicoefficient extrapolated density functional theory studies of pi...pi interactions: the benzene dimer. , 2005, The journal of physical chemistry. A.

[47]  van der Waals interaction of simple, parallel polymers. , 2005, The Journal of chemical physics.

[48]  A. Becke,et al.  Exchange-hole dipole moment and the dispersion interaction. , 2005, The Journal of chemical physics.

[49]  Jirí Cerný,et al.  The X3LYP extended density functional accurately describes H-bonding but fails completely for stacking. , 2005, Physical chemistry chemical physics : PCCP.

[50]  H. Reich,et al.  The strength of parallel-displaced arene-arene interactions in chloroform. , 2005, The Journal of organic chemistry.

[51]  J. Steyaert,et al.  Influence of the π–π interaction on the hydrogen bonding capacity of stacked DNA/RNA bases , 2005, Nucleic acids research.

[52]  J. Perdew,et al.  Test of a nonempirical density functional: short-range part of the van der Waals interaction in rare-gas dimers. , 2005, The Journal of chemical physics.

[53]  Lifeng Chi,et al.  Simple and complex lattices of N-alkyl fatty acid amides on a highly oriented pyrolytic graphite surface. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[54]  T. Walsh,et al.  Exact exchange and Wilson-Levy correlation: a pragmatic device for studying complex weakly-bonded systems. , 2005, Physical chemistry chemical physics : PCCP.

[55]  E. Schröder,et al.  van der Waals interactions of polycyclic aromatic hydrocarbon dimers. , 2005, The Journal of chemical physics.

[56]  D. Wales,et al.  Stacked clusters of polycyclic aromatic hydrocarbon molecules. , 2004, The journal of physical chemistry. A.

[57]  Sławomir M Cybulski,et al.  Critical examination of the supermolecule density functional theory calculations of intermolecular interactions. , 2005, The Journal of chemical physics.

[58]  M. Schütz,et al.  Density-functional theory-symmetry-adapted intermolecular perturbation theory with density fitting: a new efficient method to study intermolecular interaction energies. , 2005, The Journal of chemical physics.

[59]  Ivano Tavernelli,et al.  Variational optimization of effective atom centered potentials for molecular properties. , 2005, The Journal of chemical physics.

[60]  Henrik Rydberg,et al.  Van der Waals Density Functional Theory with Applications , 2005 .

[61]  M. Swart,et al.  Hydrogen bonds of RNA are stronger than those of DNA, but NMR monitors only presence of methyl substituent in uracil/thymine. , 2004, Journal of the American Chemical Society.

[62]  Ivano Tavernelli,et al.  Optimization of effective atom centered potentials for london dispersion forces in density functional theory. , 2004, Physical review letters.

[63]  Alexander D. MacKerell Empirical force fields for biological macromolecules: Overview and issues , 2004, J. Comput. Chem..

[64]  Stefan Grimme,et al.  Accurate description of van der Waals complexes by density functional theory including empirical corrections , 2004, J. Comput. Chem..

[65]  Donald G. Truhlar,et al.  Hybrid Meta Density Functional Theory Methods for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions: The MPW1B95 and MPWB1K Models and Comparative Assessments for Hydrogen Bonding and van der Waals Interactions , 2004 .

[66]  S. Grimme On the importance of electron correlation effects for the pi-pi interactions in cyclophanes. , 2004, Chemistry.

[67]  S. Grimme,et al.  Weak hydrogen bridges: a systematic theoretical study on the nature and strength of C--H...F--C interactions. , 2004, Chemistry.

[68]  F. Würthner,et al.  Supramolecular polymerization and gel formation of bis(merocyanine) dyes driven by dipolar aggregation. , 2004, Journal of the American Chemical Society.

[69]  Paul Geerlings,et al.  Influence of Stacking on Hydrogen Bonding: Quantum Chemical Study on Pyridine-Benzene Model Complexes , 2004 .

[70]  C. David Sherrill,et al.  Substituent Effects in π−π Interactions: Sandwich and T-Shaped Configurations , 2004 .

[71]  M. Nishio CH/π hydrogen bonds in crystals , 2004 .

[72]  Joachim Sauer,et al.  A hybrid MP2/planewave-DFT scheme for large chemical systems: proton jumps in zeolites , 2004 .

[73]  William A. Goddard,et al.  Bonding Properties of the Water Dimer: A Comparative Study of Density Functional Theories , 2004 .

[74]  Xin Xu,et al.  From The Cover: The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[75]  Petros Koumoutsakos,et al.  Dispersion corrections to density functionals for water aromatic interactions. , 2004, The Journal of chemical physics.

[76]  M. Dion,et al.  van der Waals density functional for general geometries. , 2004, Physical review letters.

[77]  G. Scuseria,et al.  Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes , 2003 .

[78]  E. C. Lim,et al.  Evaluation of the Hartree−Fock Dispersion (HFD) Model as a Practical Tool for Probing Intermolecular Potentials of Small Aromatic Clusters: Comparison of the HFD and MP2 Intermolecular Potentials , 2003 .

[79]  S. Grimme Improved second-order Møller–Plesset perturbation theory by separate scaling of parallel- and antiparallel-spin pair correlation energies , 2003 .

[80]  F. Diederich,et al.  Interactions with aromatic rings in chemical and biological recognition. , 2003, Angewandte Chemie.

[81]  David J. Tozer,et al.  Helium dimer dispersion forces and correlation potentials in density functional theory. , 2002 .

[82]  Georg Jansen,et al.  Intermolecular induction and exchange-induction energies from coupled-perturbed Kohn–Sham density functional theory , 2002 .

[83]  Edward F. Valeev,et al.  Estimates of the Ab Initio Limit for π−π Interactions: The Benzene Dimer , 2002 .

[84]  Sławomir M. Cybulski,et al.  Comment on “Hydrogen bonding and stacking interactions of nucleic acid base pairs: A density-functional-theory treatment” [J. Chem. Phys. 114, 5149 (2001)] , 2002 .

[85]  Tanja van Mourik,et al.  A critical note on density functional theory studies on rare-gas dimers , 2002 .

[86]  Georg Jansen,et al.  First-order intermolecular interaction energies from Kohn–Sham orbitals , 2002 .

[87]  J. Šponer,et al.  DNA Bases and Base Pairs: Ab Initio Calculations , 2002 .

[88]  F. Weigend,et al.  Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations , 2002 .

[89]  S. Tsuzuki,et al.  Origin of attraction and directionality of the pi/pi interaction: model chemistry calculations of benzene dimer interaction. , 2002, Journal of the American Chemical Society.

[90]  Qin Wu,et al.  Empirical correction to density functional theory for van der Waals interactions , 2002 .

[91]  Saroj K. Nayak,et al.  Towards extending the applicability of density functional theory to weakly bound systems , 2001 .

[92]  G. Corongiu,et al.  Van der Waals Interaction Energies of Helium, Neon, and Argon with Naphthalene , 2001 .

[93]  Thomas Frauenheim,et al.  Hydrogen bonding and stacking interactions of nucleic acid base pairs: A density-functional-theory based treatment , 2001 .

[94]  C. Chabalowski,et al.  Using Kohn−Sham Orbitals in Symmetry-Adapted Perturbation Theory to Investigate Intermolecular Interactions , 2001 .

[95]  Thomas R. Cundari,et al.  Reviews in Computational Chemistry, Reviews in Computational Chemistry , 2000 .

[96]  E. Baerends,et al.  Kohn-Sham Density Functional Theory: Predicting and Understanding Chemistry , 2007 .

[97]  N. Kannan,et al.  Aromatic clusters: a determinant of thermal stability of thermophilic proteins. , 2000, Protein engineering.

[98]  Trygve Helgaker,et al.  Molecular Electronic-Structure Theory: Helgaker/Molecular Electronic-Structure Theory , 2000 .

[99]  C. Journet,et al.  Determination of the binding energy of methane on single-walled carbon nanotube bundles , 2000 .

[100]  J. SantaLucia,et al.  Thermodynamic parameters for DNA sequences with dangling ends. , 2000, Nucleic acids research.

[101]  Wolfram Koch,et al.  A Chemist's Guide to Density Functional Theory , 2000 .

[102]  P Hobza,et al.  Noncovalent interactions: a challenge for experiment and theory. , 2000, Chemical reviews.

[103]  P Hobza,et al.  Structure, energetics, and dynamics of the nucleic Acid base pairs: nonempirical ab initio calculations. , 1999, Chemical reviews.

[104]  Arshad Khan,et al.  Theoretical studies of CH4(H2O)20, (H2O)21, (H2O)20, and fused dodecahedral and tetrakaidecahedral structures: How do natural gas hydrates form? , 1999 .

[105]  J. Sabina,et al.  Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. , 1999, Journal of molecular biology.

[106]  K. Morokuma,et al.  A NEW ONIOM IMPLEMENTATION IN GAUSSIAN98. PART I. THE CALCULATION OF ENERGIES, GRADIENTS, VIBRATIONAL FREQUENCIES AND ELECTRIC FIELD DERIVATIVES , 1999 .

[107]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[108]  Á. Pérez‐Jiménez,et al.  Density-functional study of van der Waals forces on rare-gas diatomics: Hartree–Fock exchange , 1999 .

[109]  Vincenzo Barone,et al.  Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models , 1998 .

[110]  H. Rydberg,et al.  UNIFIED TREATMENT OF ASYMPTOTIC VAN DER WAALS FORCES , 1998, cond-mat/9805352.

[111]  Dmitrii E. Makarov,et al.  van der Waals Energies in Density Functional Theory , 1998 .

[112]  S. Tsuzuki,et al.  Ab Initio Calculations of Intermolecular Interaction Potentials of Corannulene Dimer , 1998 .

[113]  M Suzuki,et al.  Use of a 3D structure data base for understanding sequence-dependent conformational aspects of DNA. , 1997, Journal of molecular biology.

[114]  A. Becke Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals , 1997 .

[115]  F. Weigend,et al.  RI-MP2: first derivatives and global consistency , 1997 .

[116]  Florian Weigend,et al.  Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials , 1997 .

[117]  D. Langreth,et al.  Van Der Waals Interactions In Density Functional Theory , 2007 .

[118]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[119]  D. Langreth,et al.  Density Functional for van der Waals Forces at Surfaces. , 1996, Physical review letters.

[120]  D. Langreth,et al.  Density functional theory including Van Der Waals forces , 1995 .

[121]  J. Šponer,et al.  Density functional theory and molecular clusters , 1995, Journal of Computational Chemistry.

[122]  Marco Häser,et al.  Auxiliary basis sets to approximate Coulomb potentials , 1995 .

[123]  José M. Pérez-Jordá,et al.  A density-functional study of van der Waals forces: rare gas diatomics. , 1995 .

[124]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[125]  Peter Pulay,et al.  CAN (SEMI) LOCAL DENSITY FUNCTIONAL THEORY ACCOUNT FOR THE LONDON DISPERSION FORCES , 1994 .

[126]  A. Schäfer,et al.  Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr , 1994 .

[127]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[128]  A. Klamt,et al.  COSMO : a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient , 1993 .

[129]  M. Waring,et al.  Molecular Aspects of Anticancer Drug/DNA Interactions , 1993 .

[130]  Gianfranco Vidali,et al.  Potentials of physical adsorption , 1991 .

[131]  Christopher A. Hunter,et al.  The nature of .pi.-.pi. interactions , 1990 .

[132]  Norman L. Allinger,et al.  Molecular mechanics. The MM3 force field for hydrocarbons. 1 , 1989 .

[133]  Hans W. Horn,et al.  ELECTRONIC STRUCTURE CALCULATIONS ON WORKSTATION COMPUTERS: THE PROGRAM SYSTEM TURBOMOLE , 1989 .

[134]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[135]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[136]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[137]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[138]  C. Ratcliffe,et al.  Low-temperature cross-polarization/magic angle spinning carbon-13 NMR of solid methane hydrates: structure, cage occupancy, and hydration number , 1988 .

[139]  J. N. Evans,et al.  Biosynthesis of porphyrins and corrins. 2. Isolation, purification, and NMR investigations of the porphobilinogen-deaminase covalent complex. , 1986, Biochemistry.

[140]  Eamonn F. Healy,et al.  Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model , 1985 .

[141]  K. Tang,et al.  An improved simple model for the van der Waals potential based on universal damping functions for the dispersion coefficients , 1984 .

[142]  G. Scoles,et al.  Intermolecular forces via hybrid Hartree–Fock–SCF plus damped dispersion (HFD) energy calculations. An improved spherical model , 1982 .

[143]  Ch. Seidel,et al.  Einführung in die theoretische Chemie. Band 2: Die chemische Bindung. Von W. KUTZELNIGG. Weinheim/New York: Verlag Chemie 1978. XXXI, 594 S., Lwd., DM 98,– , 1979 .

[144]  Giacinto Scoles,et al.  Intermolecular forces in simple systems , 1977 .

[145]  Kazuo Kitaura,et al.  A new energy decomposition scheme for molecular interactions within the Hartree‐Fock approximation , 1976 .

[146]  John W. Hepburn,et al.  A simple but reliable method for the prediction of intermolecular potentials , 1975 .

[147]  Keiji Morokuma,et al.  Molecular Orbital Studies of Hydrogen Bonds. III. C=O···H–O Hydrogen Bond in H2CO···H2O and H2CO···2H2O , 1971 .

[148]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[149]  H. B. Jansen,et al.  Non-empirical molecular orbital calculations on the protonation of carbon monoxide , 1969 .

[150]  Henry Margenau,et al.  Theory of intermolecular forces , 1969 .

[151]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[152]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[153]  W. F. Claussen,et al.  A Second Water Structure for Inert Gas Hydrates , 1951 .

[154]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .

[155]  F. London,et al.  Zur Theorie und Systematik der Molekularkräfte , 1930 .

[156]  J. Fritzsche Ueber die festen Kohlenwasserstoffe des Steinkohlentheers , 1866 .