Monadic Bounded Commutative Residuated ℓ-monoids

Bounded commutative residuated ℓ-monoids are a generalization of algebras of propositional logics such as BL-algebras, i.e. algebraic counterparts of the basic fuzzy logic (and hence consequently MV-algebras, i.e. algebras of the Łukasiewicz infinite valued logic) and Heyting algebras, i.e. algebras of the intuitionistic logic. Monadic MV-algebras are an algebraic model of the predicate calculus of the Łukasiewicz infinite valued logic in which only a single individual variable occurs. We introduce and study monadic residuated ℓ-monoids as a generalization of monadic MV-algebras.

[1]  A. Tarski,et al.  Cylindric Algebras. Part II , 1988 .

[2]  István Németi,et al.  Algebraization of quantifier logics, an introductory overview , 1991, Stud Logica.

[3]  Lawrence Peter Belluce,et al.  Representations of monadic MV -algebras , 2005, Stud Logica.

[4]  C. Tsinakis,et al.  Ordered algebraic structures , 1985 .

[5]  Jiří Rachůnek,et al.  Local bounded commutative residuated ℓ-monoids , 2007 .

[6]  Jiří Rachůnek,et al.  Negation in bounded commutative DRℓ-monoids , 2006 .

[7]  Dietrich Schwartz,et al.  Polyadic MV-Algebras , 1980, Math. Log. Q..

[8]  C. Tsinakis,et al.  Cancellative residuated lattices , 2003 .

[9]  G. Bezhanishvili,et al.  Functional monadic Heyting algebras , 2002 .

[10]  Jiří Rachůnek A duality between algebras of basic logic and bounded representable $DRl$-monoids , 2001 .

[11]  Guram Bezhanishvili,et al.  Varieties of Monadic Heyting Algebras. Part I , 1998, Stud Logica.

[12]  Guram Bezhanishvili,et al.  Varieties of Monadic Heyting Algebras Part II: Duality Theory , 1999, Stud Logica.

[13]  Constantine Tsinakis,et al.  The Structure of Residuated Lattices , 2003, Int. J. Algebra Comput..

[14]  Jiří Rachůnek,et al.  DRl-semigroups and MV-algebras , 1998 .

[15]  Radim Bělohlávek,et al.  Fuzzy Relational Systems: Foundations and Principles , 2002 .

[16]  李幼升,et al.  Ph , 1989 .

[17]  Jirí Rachunek,et al.  Truth values on generalizations of some commutative fuzzy structures , 2006, Fuzzy Sets Syst..

[18]  Antonino Salibra,et al.  Polyadic algebras over nonclassical logics , 1993 .

[19]  R. Belohlávek Fuzzy Relational Systems: Foundations and Principles , 2002 .

[20]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[21]  Dietrich Schwartz Theorie der polyadischen MV‐Algebren endlicher Ordnung , 1977 .

[22]  K. Swamy,et al.  Dually residuated lattice ordered semigroups , 1965 .

[23]  H. Ono On Some Intuitionistic Modal Logics , 1977 .

[24]  Anatolij Dvurecenskij,et al.  Bounded commutative residuated ℓ-monoids with general comparability and states , 2006, Soft Comput..

[25]  C. Tsinakis,et al.  A Survey of Residuated Lattices , 2002 .