Robust Multiple Model Fitting with Preference Analysis and Low-rank Approximation

This paper deals with the extraction of multiple models from outlier-contaminated data. The method we present is based on preference analysis and low rank approximation. After representing points in a conceptual space, Robust PCA (Principal Component Analysis) and Symmetric NMF (Non negative Matrix Factorization) are employed to reduce the multi-model fitting problem to many single-fitting problems, which in turn are solved with a strategy that resembles MSAC (M-estimator SAmple Consensus). Experimental validation on public, real data-sets demonstrates that our method compares favourably with the state of the art.

[1]  Erkki Oja,et al.  A new curve detection method: Randomized Hough transform (RHT) , 1990, Pattern Recognit. Lett..

[2]  G. Sapiro,et al.  A collaborative framework for 3D alignment and classification of heterogeneous subvolumes in cryo-electron tomography. , 2013, Journal of structural biology.

[3]  Yuri Boykov,et al.  Energy-Based Geometric Multi-model Fitting , 2012, International Journal of Computer Vision.

[4]  Robert D. Nowak,et al.  Online identification and tracking of subspaces from highly incomplete information , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[5]  Andrea Fusiello,et al.  Robust Multiple Structures Estimation with J-Linkage , 2008, ECCV.

[6]  Andrew Zisserman,et al.  MLESAC: A New Robust Estimator with Application to Estimating Image Geometry , 2000, Comput. Vis. Image Underst..

[7]  Pietro Perona,et al.  Beyond pairwise clustering , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[8]  Amnon Shashua,et al.  Doubly Stochastic Normalization for Spectral Clustering , 2006, NIPS.

[9]  Venu Madhav Govindu,et al.  A tensor decomposition for geometric grouping and segmentation , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[10]  Haesun Park,et al.  SymNMF: nonnegative low-rank approximation of a similarity matrix for graph clustering , 2014, Journal of Global Optimization.

[11]  Roberto Manduchi,et al.  CC-RANSAC: Fitting planes in the presence of multiple surfaces in range data , 2011, Pattern Recognit. Lett..

[12]  Jiri Matas,et al.  Fixing the Locally Optimized RANSAC , 2012, BMVC.

[13]  Tat-Jun Chin,et al.  Accelerated Hypothesis Generation for Multistructure Data via Preference Analysis , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[15]  Jana Kosecka,et al.  Nonparametric Estimation of Multiple Structures with Outliers , 2006, WDV.

[16]  Jiri Matas,et al.  Matching with PROSAC - progressive sample consensus , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[17]  Sunglok Choi,et al.  Performance Evaluation of RANSAC Family , 2009, BMVC.

[18]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[19]  P. Jaccard,et al.  Etude comparative de la distribution florale dans une portion des Alpes et des Jura , 1901 .

[20]  Tat-Jun Chin,et al.  Dynamic and hierarchical multi-structure geometric model fitting , 2011, 2011 International Conference on Computer Vision.

[21]  Hiroshi Kawakami,et al.  Detection of Planar Regions with Uncalibrated Stereo using Distributions of Feature Points , 2004, BMVC.

[22]  B. S. Manjunath,et al.  The multiRANSAC algorithm and its application to detect planar homographies , 2005, IEEE International Conference on Image Processing 2005.

[23]  Andrea Fusiello,et al.  T-Linkage: A Continuous Relaxation of J-Linkage for Multi-model Fitting , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[24]  Yi Ma,et al.  The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices , 2010, Journal of structural biology.

[25]  Tat-Jun Chin,et al.  The Random Cluster Model for robust geometric fitting , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[26]  Venu Madhav Govindu,et al.  Efficient Higher-Order Clustering on the Grassmann Manifold , 2013, 2013 IEEE International Conference on Computer Vision.

[27]  Jiri Matas,et al.  Randomized RANSAC with T(d, d) test , 2002, BMVC.

[28]  P. Rousseeuw,et al.  Alternatives to the Median Absolute Deviation , 1993 .

[29]  Amnon Shashua,et al.  A unifying approach to hard and probabilistic clustering , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[30]  Jiri Matas,et al.  Randomized RANSAC with Td, d test , 2004, Image Vis. Comput..

[31]  Frank Dellaert,et al.  GroupSAC: Efficient consensus in the presence of groupings , 2009, 2009 IEEE 12th International Conference on Computer Vision.