Counting Polyominoes on Twisted Cylinders

We improve the lower bounds on Klarner's constant, which describes the exponential growth rate of the number of polyominoes (connected subsets of grid squares) with a given number of squares. We achieve this by analyzing polyominoes on a different surface, a so-called $\textit{twisted cylinder}$ by the transfer matrix method. A bijective representation of the "states'' of partial solutions is crucial for allowing a compact representation of the successive iteration vectors for the transfer matrix method.

[1]  S. Golomb,et al.  Polyominoes , 2020, Handbook of Discrete and Computational Geometry, 2nd Ed..

[2]  Iwan Jensen,et al.  Counting Polyominoes: A Parallel Implementation for Cluster Computing , 2003, International Conference on Computational Science.

[3]  I. Jensen Enumerations of Lattice Animals and Trees , 2000, cond-mat/0007239.

[4]  Donald L. Kreher,et al.  Combinatorial algorithms: generation, enumeration, and search , 1998, SIGA.

[5]  Andrew R. Conway,et al.  On two-dimensional percolation , 1995 .

[6]  A. Conway Enumerating 2D percolation series by the finite-lattice method: theory , 1995 .

[7]  Chaz Reetz-Laiolo Animals , 1981, Restoration & Management Notes.

[8]  D. Klarner,et al.  A Procedure for Improving the Upper Bound for the Number of n-Ominoes , 1972, Canadian Journal of Mathematics - Journal Canadien de Mathematiques.

[9]  T. Motzkin,et al.  Relations between hypersurface cross ratios, and a combinatorial formula for partitions of a polygon, for permanent preponderance, and for non-associative products , 1948 .

[10]  S. Mattarei,et al.  INTEGERS : ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 ( 2006 ) , # A 09 ON A SPECIAL CONGRUENCE OF CARLITZ , 2006 .

[11]  Micha Moffie,et al.  The Complexity of Jensen's Algorithm for Counting Polyominoes , 2004, ALENEX/ANALC.

[12]  Doron Zeilberger,et al.  Symbol-crunching with the transfer-matrix method in order to count skinny physical creatures. , 2000 .

[13]  D. Thwaites CHAPTER 12 , 1999 .

[14]  B. M. I. Rands,et al.  Animals, Trees and Renewal Sequences , 1981 .

[15]  A. Nijenhuis Combinatorial algorithms , 1975 .

[16]  D. Klarner Cell Growth Problems , 1967, Canadian Journal of Mathematics.

[17]  R. C. Read,et al.  Contributions to the Cell Growth Problem , 1962, Canadian Journal of Mathematics.