Biogeographic and evolutionary implications of a diverse paleobiota in amber from the early Eocene of India

For nearly 100 million years, the India subcontinent drifted from Gondwana until its collision with Asia some 50 Ma, during which time the landmass presumably evolved a highly endemic biota. Recent excavations of rich outcrops of 50–52-million-year-old amber with diverse inclusions from the Cambay Shale of Gujarat, western India address this issue. Cambay amber occurs in lignitic and muddy sediments concentrated by near-shore chenier systems; its chemistry and the anatomy of associated fossil wood indicates a definitive source of Dipterocarpaceae. The amber is very partially polymerized and readily dissolves in organic solvents, thus allowing extraction of whole insects whose cuticle retains microscopic fidelity. Fourteen orders and more than 55 families and 100 species of arthropod inclusions have been discovered thus far, which have affinities to taxa from the Eocene of northern Europe, to the Recent of Australasia, and the Miocene to Recent of tropical America. Thus, India just prior to or immediately following contact shows little biological insularity. A significant diversity of eusocial insects are fossilized, including corbiculate bees, rhinotermitid termites, and modern subfamilies of ants (Formicidae), groups that apparently radiated during the contemporaneous Early Eocene Climatic Optimum or just prior to it during the Paleocene-Eocene Thermal Maximum. Cambay amber preserves a uniquely diverse and early biota of a modern-type of broad-leaf tropical forest, revealing 50 Ma of stasis and change in biological communities of the dipterocarp primary forests that dominate southeastern Asia today.

[1]  T. Mccann Chenier plain sedimentation in the Palaeogene-age lignite-rich successions of the Surat area, Gujarat, western India [Chenier-Plain-Sedimentation in den paläogenen braunkohlereichen Einheiten von Surat, Gujarat, West-Indien] , 2010 .

[2]  J. Stephenson Out of India , 2010, BMJ : British Medical Journal.

[3]  A. Rasnitsyn,et al.  Ants (Insecta: Vespida: Formicidae) in the upper Eocene amber of central and Eastern Europe , 2009 .

[4]  C. Labandeira,et al.  Late Paleocene fossils from the Cerrejón Formation, Colombia, are the earliest record of Neotropical rainforest , 2009, Proceedings of the National Academy of Sciences.

[5]  R. Mathews,et al.  Terpenoid composition and class of Tertiary resins from India , 2009 .

[6]  S. Dutta,et al.  Pyrolytic and spectroscopic studies of Eocene resin from Vastan lignite Mine, Cambay basin, Western India , 2009 .

[7]  R. Wagner,et al.  The first psychodid (Diptera: Psychodidae: Phlebotominae) species from the Lower Eocene amber of Vastan, Gujarat, India , 2009 .

[8]  Kumar Krishna,et al.  Additional Distributional Records of Ambystoma Laterale, A. Jeffersonianum (Amphibia: Caudata) and Their Unisexual Kleptogens in Northeastern North America , 2008 .

[9]  A. Sahni,et al.  Early Eocene primates from Gujarat, India. , 2009, Journal of human evolution.

[10]  N. Evenhuis,et al.  The first keroplatid (Diptera: Keroplatidae) species from the Lower Eocene amber of Vastan, Gujarat, India , 2008 .

[11]  J. Ali,et al.  Gondwana to Asia: plate tectonics, paleogeography and the biological connectivity of the Indian sub-continent from the Middle Jurassic through latest Eocene (166-35 Ma) , 2008 .

[12]  K. Nixon Paleobotany, Evidence, and Molecular Dating: An Example from the Nymphaeales , 2008 .

[13]  S. Bajpai,et al.  Age-diagnostic dinoflagellate cysts from the lignite-bearing sediments of the Vastan lignite mine, Surat district, Gujarat, western India , 2008 .

[14]  M. S. Kraemer Systematic, palaeoecology, and palaeobiogeography of the insect fauna from Mexican amber , 2007 .

[15]  Kenneth D. Rose,et al.  High bat (Chiroptera) diversity in the Early Eocene of India , 2007, Naturwissenschaften.

[16]  M. Glaubrecht,et al.  Out of Asia and into India : on the molecular phylogeny and biogeography of the endemic freshwater gastropod Paracrostoma Cossmann, 1900 (Caenogastropoda: Pachychilidae) , 2007 .

[17]  A. Rasnitsyn,et al.  A comparative analysis of the Baltic and Rovno amber arthropod faunas: representative samples , 2007 .

[18]  A. Jahren The Arctic Forest of the Middle Eocene , 2007 .

[19]  Paul M. Choate,et al.  Evolution of the Insects , 2006 .

[20]  B. Noonan,et al.  Dispersal and vicariance: the complex evolutionary history of boid snakes. , 2006, Molecular phylogenetics and evolution.

[21]  K. Anderson The nature and fate of natural resins in the geosphere. XII. Investigation of C-ring aromatic diterpenoids in Raritan amber by pyrolysis-GC-matrix isolation FTIR-MS , 2006, Geochemical transactions.

[22]  G. Weiblen,et al.  Biogeography and divergence times in the mulberry family (Moraceae). , 2005, Molecular phylogenetics and evolution.

[23]  Campbell O. Webb,et al.  Explosive Radiation of Malpighiales Supports a Mid‐Cretaceous Origin of Modern Tropical Rain Forests , 2005, The American Naturalist.

[24]  Kirk R. Johnson,et al.  South American palaeobotany and the origins of neotropical rainforests. , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[25]  J. Sparks Molecular phylogeny and biogeography of the Malagasy and South Asian cichlids (Teleostei: Perciformes: Cichlidae). , 2004, Molecular phylogenetics and evolution.

[26]  A. Nel,et al.  The French ambers: a general conspectus and the Lowermost Eocene amber deposit of Le Quesnoy in the Paris Basin , 2004 .

[27]  B. Buyck,et al.  The last common ancestor of Sarcolaenaceae and Asian dipterocarp trees was ectomycorrhizal before the India–Madagascar separation, about 88 million years ago , 2004, Molecular ecology.

[28]  R. Rana,et al.  Vertebrate fauna from the subsurface Cambay Shale (Lower Eeocene), Vastan Lignite Mine, Gujarat, India , 2004 .

[29]  S. Biju,et al.  New frog family from India reveals an ancient biogeographical link with the Seychelles , 2003, Nature.

[30]  T. Wappler,et al.  THE MIDDLE EOCENE BEE FAUNAS OF ECKFELD AND MESSEL, GERMANY (HYMENOPTERA: APOIDEA) , 2003 .

[31]  Michael J Benton,et al.  Dating the Tree of Life , 2003, Science.

[32]  John C. Briggs,et al.  The biogeographic and tectonic history of India , 2003 .

[33]  E. Conti,et al.  EARLY TERTIARY OUT-OF-INDIA DISPERSAL OF CRYPTERONIACEAE: EVIDENCE FROM PHYLOGENY AND MOLECULAR DATING , 2002, Evolution; international journal of organic evolution.

[34]  W. Himstedt,et al.  A molecular phylogeny of ichthyophiid caecilians (Amphibia: Gymnophiona: Ichthyophiidae): out of India or out of South East Asia? , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[35]  Kirk R. Johnson,et al.  A Tropical Rainforest in Colorado 1.4 Million Years After the Cretaceous-Tertiary Boundary , 2002, Science.

[36]  Katherine J. Willis,et al.  The Evolution of Plants , 2002 .

[37]  C. Raxworthy,et al.  Chameleon radiation by oceanic dispersal , 2002, Nature.

[38]  R. Disney The scuttle fly genus Rhopica Schmitz (Diptera: Phoridae) , 2002 .

[39]  A. Murray Regular ArticlesThe fossil record and biogeography of the Cichlidae (Actinopterygii: Labroidei)☆ , 2001 .

[40]  A. Murray The fossil record and biogeography of the Cichlidae (Actinopterygii: Labroidei) , 2001 .

[41]  Christopher J. Nicholas,et al.  Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs , 2001, Nature.

[42]  M. Vences,et al.  Reconciling fossils and molecules: Cenozoic divergence of cichlid fishes and the biogeography of Madagascar , 2001 .

[43]  M. Milinkovitch,et al.  Amphibians as Indicators of Early Tertiary "Out-of-India" Dispersal of Vertebrates , 2001, Science.

[44]  M. Engel A MONOGRAPH OF THE BALTIC AMBER BEES AND EVOLUTION OF THE APOIDEA (HYMENOPTERA) , 2001 .

[45]  R. Morley Origin and Evolution of Tropical Rain Forests , 2000 .

[46]  K. Anderson,et al.  The nature and fate of natural resins in the geosphere. Part X.† Structural characteristics of the macromolecular constituents of modern Dammar resin and Class II ambers , 2000 .

[47]  R. Primack,et al.  Phylogeny of the tropical tree family Dipterocarpaceae based on nucleotide sequences of the chloroplast RBCL gene. , 1999, American journal of botany.

[48]  P. Hatcher,et al.  The nature and fate of natural resins in the geosphere. IX Structure and maturation similarities of soluble and insoluble polylabdanoids isolated from Tertiary Class I resinites. , 1999 .

[49]  S. Wing,et al.  Ecological aspects of the Cretaceous flowering plant radiation , 1998 .

[50]  W. J. Murphy,et al.  A molecular phylogeny for aplocheiloid fishes (Atherinomorpha, Cyprinodontiformes): the role of vicariance and the origins of annualism. , 1997, Molecular biology and evolution.

[51]  G. Dlussky Genera of ants (Hymenoptera : Formicidae) from Baltic amber , 1997 .

[52]  D. Rowley Age of initiation of collision between India and Asia: A review of stratigraphic data , 1996 .

[53]  K. Anderson,et al.  Amber, Resinite, and Fossil Resins , 1996 .

[54]  R. Beck,et al.  Stratigraphic evidence for an early collision between northwest India and Asia , 1995, Nature.

[55]  J. Boon,et al.  Occurrence of polycadinene in fossil and recent resins , 1994 .

[56]  P. Baas,et al.  A Survey of the Fossil Record for Dicotiledonous Wood and its Significance for Evolutionary and Ecological Wood Anatomy , 1991 .

[57]  T. C. Whitmore,et al.  An Introduction to Tropical Rain Forests , 1992 .

[58]  P. Ashton,et al.  New light on the plant geography of Ceylon I. Historical plant geography , 1987 .

[59]  A. Baud,et al.  Sedimentary record of the northward flight of India and its collision with Eurasia (Ladakh Himalaya, India) , 1987 .

[60]  P. Francis Implications of continental drift to the earth sciences, 2 , 1974 .

[61]  S. Runcorn,et al.  Implications Of Continental Drift To The Earth Sciences Vol-1 , 1974 .

[62]  E. R. Oxburgh Implications of Continental Drift to the Earth Sciences Vol 3 , 1973 .