Cooperation and Competition Strategies in Multi-objective Shape Optimization - Application to Low-boom/Low-drag Supersonic Business Jet
暂无分享,去创建一个
Jean-Antoine Désidéri | Andrea Minelli | Gerald Carrier | Itham Salah El Din | Adrien Zerbinati | J. Désidéri | G. Carrier | A. Minelli | I. S. E. Din | A. Zerbinati
[1] J. Page,et al. Extrapolation of sonic boom signatures from CFD solutions , 2002 .
[2] Jean-Antoine Désidéri,et al. Multiple-Gradient Descent Algorithm (MGDA) , 2009 .
[3] J. S. Petty. Lower bounds for sonic boom considering the negative overpressure region , 1970 .
[4] G. D. van Albada,et al. A comparative study of computational methods in cosmic gas dynamics , 1982 .
[5] Jean-Antoine Désidéri,et al. Comparison between MGDA and PAES for Multi-Objective Optimization , 2011 .
[6] James M. Hyman,et al. On Finite-Difference Approximations and Entropy Conditions for Shocks , 2015 .
[7] Dimitri N. Mavris,et al. Sonic boom minimization using inverse design and probabilistic acoustic propagation , 2006 .
[8] Lothar Thiele,et al. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.
[9] J. Nash,et al. NON-COOPERATIVE GAMES , 1951, Classics in Game Theory.
[10] David W. Corne,et al. Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.
[11] Kaisa Miettinen,et al. Nonlinear multiobjective optimization , 1998, International series in operations research and management science.
[12] Lothar Thiele,et al. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..
[13] Jean-Antoine Désidéri,et al. Application of Metamodel-Assisted Multiple-Gradient Descent Algorithm (MGDA) to Air-Cooling Duct Shape Optimization , 2012 .
[14] Garret N. Vanderplaats,et al. CONMIN: A FORTRAN program for constrained function minimization: User's manual , 1973 .
[15] Lothar Thiele,et al. An evolutionary algorithm for multiobjective optimization: the strength Pareto approach , 1998 .
[16] R. Seebass,et al. SONIC BOOM MINIMIZATION , 1998 .
[17] David W. Coit,et al. Multi-objective optimization using genetic algorithms: A tutorial , 2006, Reliab. Eng. Syst. Saf..
[18] Kalyanmoy Deb,et al. A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..
[19] John A. Nelder,et al. A Simplex Method for Function Minimization , 1965, Comput. J..
[20] Peter G. Coen,et al. Origins and Overview of the Shaped Sonic Boom Demonstration Program , 2005 .
[21] Jean-Antoine Désidéri. Cooperation and competition in multidisciplinary optimization , 2012, Comput. Optim. Appl..
[22] Teuvo Kohonen,et al. Self-organized formation of topologically correct feature maps , 2004, Biological Cybernetics.
[23] Andrea Minelli,et al. Advanced Optimization Approach for Supersonic Low-Boom Design , 2012 .
[24] Christine M. Darden,et al. Limitations of linear theory for sonic boom calculations , 1993 .
[25] M. Powell. A Direct Search Optimization Method That Models the Objective and Constraint Functions by Linear Interpolation , 1994 .
[26] John Bonet,et al. Supersonic Vehicle Systems for the 2020 to 2035 Timeframe , 2010 .
[27] Jacques Periaux,et al. Combining game theory and genetic algorithms with application to DDM-nozzle optimization problems , 2001 .
[28] L. Cambier,et al. elsA - An efficient object-oriented solution to CFD complexity , 2002 .
[29] L. B. Jones,et al. Lower Bounds for the Pressure Jumps of the Shock Waves of a Supersonic Transport of Given Length , 1972 .
[30] François Coulouvrat,et al. The Challenges of Defining an Acceptable Sonic Boom Overland , 2009 .
[31] Wu Li,et al. Generalized Formulation and Extension of Sonic Boom Minimization Theory for Front and Aft Shaping , 2009 .
[32] A. R. George,et al. Lower Bounds for Sonic Booms in the Midfield , 1969 .
[33] Philip E. Gill,et al. Practical optimization , 1981 .
[34] G. Whitham. The flow pattern of a supersonic projectile , 1952 .
[35] J. Périaux,et al. Multicriterion Aerodynamic Shape Design Optimization and Inverse Problems Using Control Theory and Nash Games , 2007 .
[36] Peter J. Fleming,et al. Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation , 1998, IEEE Trans. Syst. Man Cybern. Part A.
[37] P. Roe. Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .
[38] Nikolaus Hansen,et al. Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.
[39] Albion D. Taylor,et al. The TRAPS sonic boom program , 1980 .
[40] C. M. Darden,et al. Sonic-boom minimization with nose-bluntness relaxation , 1979 .
[41] Jasbir S. Arora,et al. Survey of multi-objective optimization methods for engineering , 2004 .