Retrieval of the aerosol direct radiative effect over clouds from spaceborne spectrometry

[1] The solar radiative absorption by an aerosol layer above clouds is quantified using passive satellite spectrometry from the ultraviolet (UV) to the shortwave infrared (SWIR). UV-absorbing aerosols have a strong signature that can be detected using UV reflectance measurements, even when above clouds. Since the aerosol extinction optical thickness decreases rapidly with increasing wavelength for biomass burning aerosols, the properties of the clouds below the aerosol layer can be retrieved in the SWIR, where aerosol extinction optical thickness is sufficiently small. Using radiative transfer computations, the contribution of the clouds to the reflected radiation can be modeled for the entire solar spectrum. In this way, cloud and aerosol effects can be separated for a scene with aerosols above clouds. Aerosol microphysical assumptions and retrievals are avoided by modeling only the pure (aerosol-free) cloud spectra. An algorithm was developed using the spaceborne spectrometer Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY). The aerosol direct radiative effect (DRE) over clouds over the South Atlantic Ocean west of Africa, averaged through August 2006 was found to be 23 ± 8 Wm−2 with a mean variation over the region in this month of 22 Wm−2. The largest aerosol DRE over clouds found in that month was 132 ± 8 Wm−2. The algorithm can be applied to any instrument, or a combination of instruments, that measures UV, visible and SWIR reflectances at the top of the atmosphere (TOA) simultaneously.

[1]  M. Chin,et al.  A review of measurement-based assessments of the aerosol direct radiative effect and forcing , 2005 .

[2]  Piers M. Forster,et al.  The semi‐direct aerosol effect: Impact of absorbing aerosols on marine stratocumulus , 2004 .

[3]  H. Bovensmann,et al.  SCIAMACHY Degradation Monitoring Results , 2007 .

[4]  L. Remer,et al.  Case studies of aerosol remote sensing in the vicinity of clouds , 2009 .

[5]  Piet Stammes,et al.  Method for in-flight satellite calibration in the ultraviolet using radiative transfer calculations, with application to Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) , 2005 .

[6]  W. Paul Menzel,et al.  The MODIS cloud products: algorithms and examples from Terra , 2003, IEEE Trans. Geosci. Remote. Sens..

[7]  Didier Tanré,et al.  Aerosol Remote Sensing over Clouds Using A-Train Observations , 2009 .

[8]  P. Pilewskie,et al.  Examining the impact of overlying aerosols on the retrieval of cloud optical properties from passive remote sensing , 2010 .

[9]  Zhaoyan Liu,et al.  Quantifying above‐cloud aerosol using spaceborne lidar for improved understanding of cloudy‐sky direct climate forcing , 2008 .

[10]  Jens Redemann,et al.  Simultaneous retrieval of aerosol and cloud properties during the MILAGRO field campaign , 2011 .

[11]  Piet Stammes,et al.  Atmospheric Chemistry and Physics SCIAMACHY Absorbing Aerosol Index – calibration issues and , 2005 .

[12]  M. V. Roozendael,et al.  FRESCO+: an improved O 2 A-band cloud retrieval algorithm for tropospheric trace gas retrievals , 2008 .

[13]  Piet Stammes,et al.  First retrieval of cloud phase from SCIAMACHY spectra around 1.6 μm , 2004 .

[14]  John P. Burrows,et al.  Calibration of SCIAMACHY Using AATSR Top-of-Atmosphere Reflectance Over a Hurricane , 2007, IEEE Geoscience and Remote Sensing Letters.

[15]  P. Bhartia,et al.  Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation , 1998 .

[16]  Henk Eskes,et al.  Retrieval and validation of ozone columns derived from measurements of SCIAMACHY on Envisat , 2005 .

[17]  C. Liousse,et al.  Simulation of the direct and semidirect aerosol effects on the southern Africa regional climate during the biomass burning season , 2010 .

[18]  A. Hauser,et al.  NOAA AVHRR derived aerosol optical depth over land , 2005 .

[19]  L. G. Tilstra,et al.  In-flight degradation correction of SCIAMACHY UV reflectances and Absorbing Aerosol Index , 2012 .

[20]  W. Paul Menzel,et al.  CLOUD TOP PROPERTIES AND CLOUD PHASE ALGORITHM THEORETICAL BASIS DOCUMENT , 2002 .

[21]  J. Haywood,et al.  Solar radiative forcing by biomass burning aerosol particles during SAFARI 2000: A case study based on measured aerosol and cloud properties , 2003 .

[22]  David J. Diner,et al.  Sensitivity of multiangle imaging to aerosol optical depth and to pure‐particle size distribution and composition over ocean , 1998 .

[23]  J. Jimenez,et al.  Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition , 2009 .

[24]  P. Formenti,et al.  The mean physical and optical properties of regional haze dominated by biomass burning aerosol measured from the C-130 aircraft during SAFARI 2000 , 2003 .

[25]  David J. Diner,et al.  MISR aerosol optical depth retrievals over southern Africa during the SAFARI‐2000 Dry Season Campaign , 2001 .

[26]  C. Gueymard The sun's total and spectral irradiance for solar energy applications and solar radiation models , 2004 .

[27]  P. Rasch,et al.  Direct and semidirect aerosol effects of southern African biomass burning aerosol , 2011 .

[28]  U. Lohmann,et al.  Global indirect aerosol effects: a review , 2004 .

[29]  M. Rast,et al.  The ESA Medium Resolution Imaging Spectrometer MERIS a review of the instrument and its mission , 1999 .

[30]  Juan Ramon Acarreta,et al.  Calibration comparison between SCIAMACHY and MERIS onboard ENVISAT , 2005, IEEE Geoscience and Remote Sensing Letters.

[31]  Hiren Jethva,et al.  Satellite-Based Evidence of Wavelength-Dependent Aerosol Absorption in Biomass Burning Smoke Inferred from Ozone Monitoring Instrument , 2011 .

[32]  P. Levelt,et al.  Aerosols and surface UV products from Ozone Monitoring Instrument observations: An overview , 2007 .

[33]  Piet Stammes,et al.  Cloud Thermodynamic-Phase Determination From Near-Infrared Spectra of Reflected Sunlight , 2002 .

[34]  Piet Stammes,et al.  Absorbing Aerosol Index: Sensitivity analysis, application to GOME and comparison with TOMS , 2005 .

[35]  E. Wilcox Stratocumulus cloud thickening beneath layers of absorbing smoke aerosol , 2010 .

[36]  Michael Buchwitz,et al.  Validation of SCIAMACHY top-of-atmosphere reflectance for aerosol remote sensing using MERIS L1 data , 2006 .

[37]  J. Haywood,et al.  The direct radiative effect of biomass burning aerosols over southern Africa , 2005 .

[38]  Maurice Herman,et al.  Analysis of the POLDER polarization measurements performed over cloud covers , 1994, IEEE Trans. Geosci. Remote. Sens..

[39]  Paul Ginoux,et al.  A Long-Term Record of Aerosol Optical Depth from TOMS Observations and Comparison to AERONET Measurements , 2002 .

[40]  N. Bellouin,et al.  Effects of absorbing aerosols in cloudy skies: a satellite study over the Atlantic Ocean , 2009 .

[41]  Michael Eisinger,et al.  Refinement of a Database of Spectral Surface Reflectivity in the Range 335-772 nm Derived from 5.5 Years of GOME Observations , 2003 .

[42]  D. Winker,et al.  Initial performance assessment of CALIOP , 2007 .

[43]  Piet Stammes,et al.  Large-scale validation of SCIAMACHY reflectance in the ultraviolet , 2005 .

[44]  E. Vermote,et al.  The MODIS Aerosol Algorithm, Products, and Validation , 2005 .

[45]  Hiren Jethva,et al.  Retrieval of Aerosol Optical Depth above Clouds from OMI Observations: Sensitivity Analysis and Case Studies , 2012 .

[46]  François-Marie Bréon,et al.  Analysis of aerosol‐cloud interaction from multi‐sensor satellite observations , 2010 .

[47]  Rob Roebeling,et al.  Cloud property retrievals for climate monitoring: Implications of differences between Spinning Enhanced Visible and Infrared Imager (SEVIRI) on METEOSAT‐8 and Advanced Very High Resolution Radiometer (AVHRR) on NOAA‐17 , 2006 .

[48]  F. X. Kneizys,et al.  AFGL atmospheric constituent profiles (0-120km) , 1986 .

[49]  C. Bohren,et al.  An introduction to atmospheric radiation , 1981 .

[50]  Thomas W. Kirchstetter,et al.  Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon , 2004 .

[51]  Piet Stammes,et al.  Analysis of reflectance spectra of UV-absorbing aerosol scenes measured by SCIAMACHY , 2007 .

[52]  M. Buchwitz,et al.  SCIAMACHY: Mission Objectives and Measurement Modes , 1999 .

[53]  Jim Haywood,et al.  The effect of overlying absorbing aerosol layers on remote sensing retrievals of cloud effective radius and cloud optical depth , 2004 .

[54]  J. Hovenier,et al.  The adding method for multiple scattering calculations of polarized light , 1987 .

[55]  Eric M. Wilcox,et al.  Direct and semi-direct radiative forcing of smoke aerosols over clouds , 2011 .

[56]  Tami C. Bond,et al.  Spectral absorption properties of atmospheric aerosols , 2007 .

[57]  Pieternel F. Levelt,et al.  Total ozone from the ozone monitoring instrument (OMI) using the DOAS technique , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[58]  J. Hansen Multiple Scattering of Polarized Light in Planetary Atmospheres Part II. Sunlight Reflected by Terrestrial Water Clouds , 1971 .

[59]  J. Herman,et al.  Radiative impacts from biomass burning in the presence of clouds during boreal spring in southeast Asia , 2003 .

[60]  P. Bhartia,et al.  Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data , 1997 .

[61]  M. King,et al.  Determination of the optical thickness and effective particle radius of clouds from reflected solar , 1990 .

[62]  Vladimir V. Rozanov,et al.  The SCIAMACHY cloud products: Algorithms and examples from ENVISAT , 2005 .

[63]  T. Berntsen,et al.  Modeling the solar radiative impact of aerosols from biomass burning during the Southern African Regional Science Initiative (SAFARI-2000) experiment , 2003 .

[64]  F. X. Kneizys,et al.  AFGL (Air Force Geophysical Laboratory) atmospheric constituent profiles (0. 120km). Environmental research papers , 1986 .

[65]  Ziauddin Ahmad,et al.  Spectral properties of backscattered UV radiation in cloudy atmospheres , 2004 .

[66]  W. D. Rooij,et al.  Expansion of Mie scattering matrices in generalized spherical functions , 1984 .

[67]  Teruyuki Nakajima,et al.  A Global Determination of Cloud Microphysics with AVHRR Remote Sensing , 2001 .

[68]  E. O'connor,et al.  The CloudSat mission and the A-train: a new dimension of space-based observations of clouds and precipitation , 2002 .

[69]  Robert Wood,et al.  Satellite-derived direct radiative effect of aerosols dependent on cloud cover , 2009 .

[70]  M. Garstang,et al.  The long‐range transport of southern African aerosols to the tropical South Atlantic , 1996 .

[71]  O. Boucher,et al.  Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review , 2000 .