Root of unity quantum cluster algebras and Cayley-Hamilton algebras
暂无分享,去创建一个
[1] G. Muller. Skein and cluster algebras of marked surfaces , 2016 .
[2] A. Zelevinsky,et al. Quantum cluster algebras , 2004, math/0404446.
[3] V. Kac,et al. Representations of quantum groups at roots of 1 , 1992 .
[4] Claudio Procesi,et al. A formal inverse to the Cayley-Hamilton theorem , 1987 .
[5] Jonathan Paprocki. Quantum torus methods for Kauffman bracket skein modules , 2019, 1910.01676.
[6] Joydeep Ghosh,et al. Cluster ensembles , 2011, Data Clustering: Algorithms and Applications.
[7] Sergey Fomin,et al. The Laurent Phenomenon , 2002, Adv. Appl. Math..
[8] Thang T. Q. Lê,et al. Stated Skein Modules of Marked 3-Manifolds/Surfaces, a Survey , 2020, Acta Mathematica Vietnamica.
[9] K. Brown,et al. Azumaya loci and discriminant ideals of PI algebras , 2017, Advances in Mathematics.
[10] J. T. Stafford. Auslander‐Regular Algebras and Maximal Orders , 1994 .
[11] Cluster ensembles, quantization and the dilogarithm , 2003, math/0311245.
[12] Sergey Fomin,et al. Cluster algebras III: Upper bounds and double Bruhat cells , 2003 .
[13] S. Fomin,et al. Cluster algebras I: Foundations , 2001, math/0104151.
[14] R. Marsh. Lecture Notes on Cluster Algebras , 2014 .
[15] C. Geiss,et al. Quantum cluster algebras and their specializations , 2018, 1807.09826.
[16] M. Yakimov,et al. Root of unity quantum cluster algebras and discriminants , 2020, 2012.02314.
[17] C. Deconcini,et al. Quantum Function Algebra at Roots of 1 , 1994 .
[18] D. Rupel,et al. Introduction to Cluster Algebras , 2018, 1803.08960.
[19] J. Alonso,et al. Convex and Discrete Geometry , 2009 .
[20] Bernard Leclerc,et al. Cluster algebras , 2014, Proceedings of the National Academy of Sciences.