Manchester encoded bandpass sigma-delta modulation for RF class D amplifiers

An analysis of a continuous-time bandpass sigma–delta modulator in a configuration with an upconverter is given for a RF class D amplifier application. The upconverter multiplies the modulator pulse train with a synchronised clock signal and maps each modulator bit to an integer multiple k of a (+1, −1) or (−1, +1) pattern depending on the sign of the modulator bit. The upconversion is equivalent to an extension of Manchester encoding, which is usually defined for k=1. The analysis focuses on evaluating the impact of upconversion on the modulator coding efficiency and the average pulse period. A design equation is derived, which shows that coding efficiency is dependent only on the upconversion frequency ratio, while the average pulse period depends only on k. The equations provide a designer with a way of evaluating the trade-offs in the amplifier system and show that encoding with k=1 is the most efficient configuration for maximising coding efficiency and minimising switching power loss.

[1]  Ii Leon W. Couch Digital and analog communication systems , 1983 .

[2]  Marek Syrzycki,et al.  Fractional delay sigma-delta upconverter , 2005 .

[3]  Lawrence E. Larson,et al.  Linear high-efficiency microwave power amplifiers using bandpass delta-sigma modulators , 1998 .

[4]  Yong Lian,et al.  A 1GHz CMOS fourth-order continuous-time bandpass sigma delta modulator for RF receiver front end A/D conversion , 2005, Proceedings of the ASP-DAC 2005. Asia and South Pacific Design Automation Conference, 2005..

[5]  Shawn P. Stapleton,et al.  Tunable continuous-time bandpass /spl Sigma//spl Delta/ modulators with fractional delays , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[6]  W. Snelgrove,et al.  Optimal (Bandpass) Continuous-Time Sigma-Delta Modulator. , 1994 .

[7]  T. H. Pearce,et al.  Bandpass implementation of the sigma-delta A-D conversion technique , 1991 .

[8]  S. C. Cripps,et al.  RF Power Amplifiers for Wireless Communications , 1999 .

[9]  William Martin Snelgrove,et al.  A 950-MHz IF second-order integrated LC bandpass delta-sigma modulator , 1998 .

[10]  S.-A. El-Hamamsy,et al.  Design of high-efficiency RF Class-D power amplifier , 1994 .

[11]  Hai Tao,et al.  A 400-Ms/s Frequency Translating , 1999 .

[12]  H. F. Davis Fourier series and orthogonal functions , 1965 .

[13]  Omid Shoaei,et al.  Optimal (bandpass) continuous-time /spl Sigma//spl Delta/ modulator , 1994, Proceedings of IEEE International Symposium on Circuits and Systems - ISCAS '94.

[14]  Robert Sobot,et al.  Tunable continuous-time bandpass ΣΔ modulators with fractional delays. , 2006 .

[15]  Steve C. Cripps,et al.  RF Power Amplifiers for Wireless Communications, Second Edition (Artech House Microwave Library (Hardcover)) , 2006 .

[16]  Frederick H. Raab,et al.  Solid State Radio Engineering , 1980 .

[17]  J. M. Khoury,et al.  A 400-Ms/s frequency translating bandpass sigma-delta modulator , 1999, IEEE J. Solid State Circuits.

[18]  T. Johnson,et al.  Available load power in a RF class D amplifier with a sigma-delta modulator driver , 2004, Proceedings. 2004 IEEE Radio and Wireless Conference (IEEE Cat. No.04TH8746).

[19]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[20]  Mark Sandler,et al.  Hybrid pulse width modulation/sigma-delta modulation power digital-to-analogue converter , 1996 .