Minimum Cut of Directed Planar Graphs in O(n log log n) Time

We give an $O(n \log \log n)$ time algorithm for computing the minimum cut (or equivalently, the shortest cycle) of a weighted directed planar graph. This improves the previous fastest $O(n\log^3 n)$ solution. Interestingly, while in undirected planar graphs both min-cut and min $st$-cut have $O(n \log \log n)$ solutions, in directed planar graphs our result makes min-cut faster than min $st$-cut, which currently requires $O(n \log n)$.

[1]  Vijay V. Vazirani,et al.  Matching is as easy as matrix inversion , 1987, STOC.

[2]  Danupon Nanongkai,et al.  A deterministic near-linear time algorithm for finding minimum cuts in planar graphs , 2004, SODA '04.

[3]  Hsueh-I Lu,et al.  Minimum Cuts and Shortest Cycles in Directed Planar Graphs via Noncrossing Shortest Paths , 2017, SIAM J. Discret. Math..

[4]  Philip N. Klein,et al.  Multiple-source shortest paths in planar graphs , 2005, SODA '05.

[5]  Russ Bubley,et al.  Randomized algorithms , 1995, CSUR.

[6]  Amir Nayyeri,et al.  Minimum cuts and shortest non-separating cycles via homology covers , 2011, SODA '11.

[7]  Karsten Weihe Maximum (s,t)-flows in planar networks in O(|V|log|V|) time , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[8]  Piotr Sankowski,et al.  Min-Cuts and Shortest Cycles in Planar Graphs in O(n loglogn) Time , 2011, ESA.

[9]  Raphael Yuster,et al.  Computing the Girth of a Planar Graph in O(n logn) Time , 2009, ICALP.

[10]  Haim Kaplan,et al.  Minimum s-t cut in undirected planar graphs when the source and the sink are close , 2011, STACS.

[11]  Raphael Yuster,et al.  Computing the Girth of a Planar Graph in O(n logn) Time , 2009, ICALP.

[12]  Kyle Fox,et al.  Holiest minimum-cost paths and flows in surface graphs , 2018, STOC.

[13]  Václav Koubek,et al.  Minimum cut in directed planar networks , 1992, Kybernetika.

[14]  Satish Rao,et al.  Planar graphs, negative weight edges, shortest paths, and near linear time , 2006, J. Comput. Syst. Sci..

[15]  Hsueh-I Lu,et al.  Computing the Girth of a Planar Graph in Linear Time , 2011, COCOON.

[16]  John H. Reif,et al.  Minimum s-t Cut of a Planar Undirected Network in O(n log2(n)) Time , 1983, SIAM J. Comput..

[17]  Piotr Sankowski,et al.  Improved algorithms for min cut and max flow in undirected planar graphs , 2011, STOC '11.

[18]  David Eppstein,et al.  The Polyhedral Approach to the Maximum Planar Subgraph Problem: New Chances for Related Problems , 1994, GD.

[19]  Jeff Erickson,et al.  Greedy optimal homotopy and homology generators , 2005, SODA '05.

[21]  Kyle Fox Shortest Non-trivial Cycles in Directed and Undirected Surface Graphs , 2013, SODA.

[22]  Christian Wulff-Nilsen,et al.  Girth of a Planar Digraph with Real Edge Weights in O(n(log n)^3) Time , 2009, ArXiv.

[23]  Hristo Djidjev,et al.  A faster algorithm for computing the girth of planar and bounded genus graphs , 2010, TALG.

[24]  Philip N. Klein,et al.  Structured recursive separator decompositions for planar graphs in linear time , 2012, STOC '13.

[25]  Erin W. Chambers,et al.  Multiple-Source Shortest Paths in Embedded Graphs , 2012, SIAM J. Comput..

[26]  R. Tarjan,et al.  A Separator Theorem for Planar Graphs , 1977 .

[27]  Philip N. Klein,et al.  Faster Shortest-Path Algorithms for Planar Graphs , 1997, J. Comput. Syst. Sci..

[28]  Jeff Erickson Shortest non-trivial cycles in directed surface graphs , 2011, SoCG '11.

[29]  Hristo Djidjev,et al.  Planarization of Graphs Embedded on Surfaces , 1995, WG.

[30]  Greg N. Frederickson,et al.  Fast Algorithms for Shortest Paths in Planar Graphs, with Applications , 1987, SIAM J. Comput..