The mechanical behavior of GLARE laminates for aircraft structures

GLARE (glass-reinforced aluminum laminate) is a new class of fiber metal laminates for advanced aerospace structural applications. It consists of thin aluminum sheets bonded together with unidirectional or biaxially reinforced adhesive prepreg of high-strength glass fibers. GLARE laminates offer a unique combination of properties such as outstanding fatigue resistance, high specific static properties, excellent impact resistance, good residual and blunt notch strength, flame resistance and corrosion properties, and ease of manufacture and repair. GLARE laminates can be tailored to suit a wide variety of applications by varying the fiber/resin system, the alloy type and thickness, stacking sequence, fiber orientation, surface pretreatment technique, etc. This article presents a comprehensive overview of the mechanical properties of various GLARE laminates under different loading conditions.

[1]  X.R. Wu,et al.  A THEORETICAL MODEL FOR PREDICTING FATIGUE CRACK GROWTH RATES IN FIBRE‐REINFORCED METAL LAMINATES , 1998 .

[2]  An investigation on the bearing test procedure for fibre-reinforced aluminium laminates , 1994, Journal of Materials Science.

[3]  Masamichi Kawai,et al.  INELASTIC BEHAVIOR AND STRENGTH OF FIBER–METAL HYBRID COMPOSITE: GLARE , 1998 .

[4]  R. Bucci,et al.  A crack growth resistance curve approach to fiber/metal laminate fracture toughness evaluation , 1993 .

[5]  S. Spearing,et al.  Delamination growth from face sheet seams in cross-ply titanium/graphite hybrid laminates , 2001 .

[6]  V. Srivastava,et al.  Notched tensile strength of various fibre reinforced metal laminates , 2000 .

[7]  Takashi Matsumura,et al.  Fatigue crack growth properties of a GLARE3-5/4 fiber/metal laminate , 1999 .

[8]  M. Hagenbeek,et al.  Static Properties of Fibre Metal Laminates , 2003 .

[9]  C.A.J.R. Vermeeren,et al.  An Historic Overview of the Development of Fibre Metal Laminates , 2003 .

[10]  Herbert Herman,et al.  Treatise on Materials Science and Technology , 1979 .

[11]  A. Vlot,et al.  Impact loading on fibre metal laminates , 1996 .

[12]  A. Vlot,et al.  Development of fibre metal laminates for advanced aerospace structures , 2000 .

[13]  M. Kawai,et al.  Two-stress level fatigue of unidirectional fiber–metal hybrid composite: GLARE 2 , 2002 .

[14]  C. A. J. R. Vermeeren,et al.  Glare Design Aspects and Philosophies , 2003 .

[15]  Y. Mai,et al.  2.08 – Hybrids and Sandwiches , 2000 .

[16]  Yiu-Wing Mai,et al.  Evaluations of effective crack growth and residual strength of fibre-reinforced metal laminates with a sharp notch , 1996 .

[17]  A. Vlot,et al.  Impact Response of Fiber Metal Laminates , 1997 .

[18]  A. Fahr,et al.  Post-impact fatigue damage growth in fiber–metal laminates , 2002 .

[19]  J. Schijve Development of fibre-metal laminates, ARALL and GLARE, new fatigue resistant materials , 1993 .

[20]  J. B. Young,et al.  Crack growth and residual strength characteristics of two grades of glass-reinforced aluminium ‘Glare’ , 1994 .

[21]  B. Borgonje,et al.  Long Term Behaviour of Glare , 2003 .

[22]  A. Fahr,et al.  Nondestructive evaluation methods for damage assessment in fiber‐metal laminates , 2000 .

[23]  L. B. Vogelesang,et al.  Towards application of fibre metal laminates in large aircraft , 1999 .

[24]  J. Polák,et al.  Fatigue crack initiation in fibre-metal laminate glare 2 , 1997 .

[25]  R. C. Alderliesten,et al.  Fatigue and Damage Tolerance of Glare , 2003 .

[26]  W. Johnson,et al.  An Investigation into the Fatigue of a Hybrid Titanium Composite Laminate , 1998 .

[27]  P. A. Hooijmeijer,et al.  Maintenance of Glare Structures and Glare as Riveted or Bonded Repair Material , 2003 .

[28]  René Alderliesten,et al.  Fatigue crack growth prediction in GLARE hybrid laminates , 2003 .

[29]  R. Ritchie,et al.  Fatigue crack propagation in ARALL® LAMINATES: Measurement of the effect of crack-tip shielding from crack bridging , 1989 .

[30]  J. Schijve,et al.  FATIGUE CRACK GROWTH BEHAVIOUR OF FIBRE‐METAL LAMINATE GLARE‐1 AND METAL LAMINATE 7475 WITH DIFFERENT BLUNT NOTCHES , 1997 .

[31]  W. J. Slagter,et al.  Use of rule of mixtures and metal volume fraction for mechanical property predictions of fibre-reinforced aluminium laminates , 1994, Journal of Materials Science.

[32]  A. Vlot,et al.  The Influence of the Constituent Properties on the Residual Strength of Glare , 2001 .

[33]  Yaxin Guo,et al.  Bridging stress distribution in center-cracked fiber reinforced metal laminates: modeling and experiment , 1999 .

[34]  On the Bearing Strength of Fibre Metal Laminates , 1992 .

[35]  Ya-Jun Guo,et al.  A phenomenological model for predicting crack growth in fiber-reinforced metal laminates under constant-amplitude loading , 1999 .

[36]  Lin Ye,et al.  An Effective Crack Growth Model for Residual Strength Evaluation of Composite Laminates with Circular Holes , 1996 .

[37]  S. Krishnakumar,et al.  Fiber Metal Laminates — The Synthesis of Metals and Composites , 1994 .

[38]  A. Vlot,et al.  Impact properties of Fibre Metal Laminates , 1993 .

[39]  Romesh C. Batra,et al.  Residual strength of centrally cracked metal/fiber composite laminates , 1996 .

[40]  Jenn‐Ming Yang,et al.  Analytical modelling and numerical simulation of the nonlinear deformation of hybrid fibre–metal laminates , 2005 .

[41]  Progressive Damage and Residual Strength of a Carbon Fibre Reinforced Metal Laminate , 1997 .

[42]  T. Lin Fatigue Crack Initiation. , 1991 .