A Spectroscopic Study of Nitric‐Oxide‐Treated Ceruloplasmin

An analysis of the absorbance difference (oxidized minus reduced) and circular dichroic (CD) spectrum of ceruloplasmin in Gaussian curves is presented. Above 330 nm, both spectra are composed of the same set of six Gaussian bands, Attributed to typr-1 copper. An Additional band in the absorbance difference spectrum at 320 nm is ascribed to typr-3 copper. The time dependence of thje effect of nitric oxide on the absorbance difference, circular dichroism and electron paramagnetic resonance (EPR) spectrum of ceruloplasmin has been studied. Upon incubation with nitric oxide for 5 min, the CD spectrum of ceruloplasmin shows a slight decrease of the ellipticity around 600 nm, and a marked decrease at 456 nm, indicative of the non-equivalence of the type-1 coppers in ceruloplasmin, Longer incubation (2 h) with nitric oxide leads to a decrease of the CD and absorbance spectrum of the ceruloplasmin-NO compound, due to reduction o0f the type-1 copper. Upon prolonged incubation with NO, the type-2 copper EPR spectrum (93 K) changes and a distinct superhyperfine pattern appears in the g, suggesting an interaction of the type-2 copper with nitrogen atoms from the protein moiety. At 15 K the EPR spectrum of oxidized ceruloplasmin exhibits a small signal at g=4. Upon incubsation with nitric oxide this signal increases in intensity, and shows a well-resolved hyperfine pattern of seven lines. In addintion ot hte type-2 copper signal, a broad signal is observed at g=2. It is proposed that these signals in NO-treated ceruloplasmin stem from magnetically coupled type-3 coppers.

[1]  H. van der Deen,et al.  Nitrite and nitric oxide treatment of Helix pomatia hemocyanin: single and double oxidation of the active site. , 1977, Biochemistry.

[2]  M. Herve,et al.  Ceruloplasmin-anion interaction. A circular dichroism spectroscopic study. , 1976, Biochimica et biophysica acta.

[3]  L. Avigliano,et al.  The interaction of nitric oxide with ascorbate oxidase. , 1975, Biochimica et biophysica acta.

[4]  M. Herve,et al.  The effects of neutral salts on the conformational transition of ceruloplasmin. , 1975, Biochimica et biophysica acta.

[5]  M. Brunori,et al.  The reaction of nitric oxide with Rhus vernicifera laccase , 1975, FEBS letters.

[6]  D. Eaker,et al.  Reactivities of the cysteinyl residues of human ceruloplasmin (ferroxidase) , 1975, FEBS letters.

[7]  V. Miskowski,et al.  The copper coordination group in "blue" copper proteins: evidence from resonance Raman spectra. , 1975, Biochemistry.

[8]  J. Deinum,et al.  Sulfhydryl groups, disulfide bridges and the state of copper in three blue oxidases , 1975, FEBS letters.

[9]  I. Sjöholm,et al.  Circular dichroism studies on the copper ligand structure of umecyanin by spectropolarimetric titration. , 1974, Biochimica et biophysica acta.

[10]  H. Gray,et al.  Preparation and spectroscopic studies of cobalt(II) derivatives of blue copper proteins. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[11]  H. Gray,et al.  Preparation and spectroscopic studies of cobalt(II)-stellacyanin. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[12]  A. J. Uiterkamp,et al.  Computer simulation of the EPR spectra of mononuclear and dipolar coupled Cu(II) ions in nitric oxide- and nitrite-treated hemocyanins and tyrosinase , 1974 .

[13]  G. Rotilio,et al.  Parsley plastocyanin. The possible presence of sulfhydryl and tyrosine in the copper environment. , 1974, Biochemistry.

[14]  C. Hartzell,et al.  The valence of copper and the role of superoxide in the D-galactose oxidase catalyzed reaction. , 1973, Biochemical and biophysical research communications.

[15]  F. R. van Leeuwen,et al.  EPR study of nitric oxide-treated reduced ceruloplasmin. , 1973, Biochimica et biophysica acta.

[16]  J. Deinum,et al.  The stoichiometry of the paramagnetic copper and the oxidation-reduction potentials of type I copper in human ceruloplasmin. , 1973, Biochimica et biophysica acta.

[17]  R. J. Williams,et al.  Anion-binding and the state of copper in caeruloplasmin. , 1973, Biochimica et biophysica acta.

[18]  F. R. van Leeuwen,et al.  The reaction of nitric oxide with ceruloplasmin. , 1973, Biochimica et biophysica acta.

[19]  H. S. Mason,et al.  Magnetic dipole-dipole coupled Cu(II) pairs in nitric oxide-treated tyrosinase: a structural relationship between the active sites of tyrosinase and hemocyanin. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[20]  B. V. van Gelder,et al.  The ratio of type-I and -2 Cu(II) in human ceruloplasmin. , 1973, Biochimica et biophysica acta.

[21]  B. Reinhammar,et al.  Visible and near-infrared circular dichroism of some blue copper proteins. , 1972, Biochimica et biophysica acta.

[22]  J. Pilbrow,et al.  Electron Spin Resonance Study of Metal Ion Separations in Dimeric Copper (II) and Vanadyl Porphyrins , 1972 .

[23]  A. J. Uiterkamp,et al.  Monomer and magnetic dipole‐coupled Cu2+ EPR signals in nitrosylhemocyanin , 1972, FEBS letters.

[24]  Robert J. P. Williams,et al.  Catalysis by metallo-enzymes: The entatic state , 1971 .

[25]  R. Carrico,et al.  Anaerobic Oxidation‐Reduction Titrations of Human Ceruloplasmin , 1971 .

[26]  B. Reinhammar,et al.  The electron-accepting sites in Rhus vernicifera laccase as studied by anaerobic oxidation-reduction titrations. , 1971, European journal of biochemistry.

[27]  T. Vänngård,et al.  Evidence of a specific copper(II) in human ceruloplasmin as a binding site for inhibitory anions. , 1970, Biochimica et biophysica acta.

[28]  R. Malkin,et al.  Spectroscopic differentiation of the electron-accepting sites in fungal laccase. Association of a near ultraviolet band with a two electron-accepting unit. , 1969, European journal of biochemistry.

[29]  C. Kasper Ceruloplasmin-anion interactions. Induced spectral transitions in the visible range. , 1968, The Journal of biological chemistry.

[30]  G. Bryce,et al.  Cupric ion in blue proteins. , 1968, The Journal of chemical physics.

[31]  B. Reinhammar,et al.  Two forms of copper (II) in fungal laccase. , 1968, Biochimica et biophysica acta.

[32]  S. H. Koenig,et al.  Low temperature magnetic susceptibility of ceruloplasmin. , 1967, Journal of molecular biology.

[33]  P. Aisen,et al.  The biochemistry of copper : proceedings of the symposium on copper in biological systems held at arden house, Harriman, New York, September 8-10, 1965 , 1966 .

[34]  A. Ehrenberg,et al.  A magnetic susceptibility study of copper valence in ceruloplasmin and laccase , 1962 .

[35]  D. Walsh,et al.  Rapid method for preparation of crystalline human ceruloplasmin from Cohn fraction IV-1. , 1962, Archives of biochemistry and biophysics.