Ubiquitylation, neddylation and the DNA damage response

Failure of accurate DNA damage sensing and repair mechanisms manifests as a variety of human diseases, including neurodegenerative disorders, immunodeficiency, infertility and cancer. The accuracy and efficiency of DNA damage detection and repair, collectively termed the DNA damage response (DDR), requires the recruitment and subsequent post-translational modification (PTM) of a complex network of proteins. Ubiquitin and the ubiquitin-like protein (UBL) SUMO have established roles in regulating the cellular response to DNA double-strand breaks (DSBs). A role for other UBLs, such as NEDD8, is also now emerging. This article provides an overview of the DDR, discusses our current understanding of the process and function of PTM by ubiquitin and NEDD8, and reviews the literature surrounding the role of ubiquitylation and neddylation in DNA repair processes, focusing particularly on DNA DSB repair.

[1]  Chao Xu,et al.  Structure and Function of WD 40 domain Proteins , 2016 .

[2]  M. Maris,et al.  Pevonedistat (MLN4924), a First‐in‐Class NEDD8‐activating enzyme inhibitor, in patients with acute myeloid leukaemia and myelodysplastic syndromes: a phase 1 study , 2015, British journal of haematology.

[3]  S. Zha,et al.  Interactome analysis identifies a new paralogue of XRCC4 in non-homologous end joining DNA repair pathway , 2015, Nature Communications.

[4]  Tom L. Blundell,et al.  PAXX, a paralog of XRCC4 and XLF, interacts with Ku to promote DNA double-strand break repair , 2015, Science.

[5]  Chunaram Choudhary,et al.  Ubiquitin-SUMO Circuitry Controls Activated Fanconi Anemia ID Complex Dosage in Response to DNA Damage , 2015, Molecular cell.

[6]  María Jesús Fernández-Ávila,et al.  Neddylation inhibits CtIP-mediated resection and regulates DNA double strand break repair pathway choice , 2015, Nucleic acids research.

[7]  E. Lander,et al.  Development and Applications of CRISPR-Cas 9 for Genome Engineering , 2015 .

[8]  M. Peter,et al.  Protein neddylation: beyond cullin–RING ligases , 2014, Nature Reviews Molecular Cell Biology.

[9]  D. Baker,et al.  Spartan deficiency causes genomic instability and progeroid phenotypes , 2014, Nature Communications.

[10]  Yi Sun,et al.  Targeting Neddylation pathways to inactivate cullin-RING ligases for anticancer therapy. , 2014, Antioxidants & redox signaling.

[11]  Jiri Bartek,et al.  TRIP12 and UBR5 Suppress Spreading of Chromatin Ubiquitylation at Damaged Chromosomes , 2014, Cell.

[12]  J. Doudna,et al.  The new frontier of genome engineering with CRISPR-Cas9 , 2014, Science.

[13]  N. Dantuma,et al.  Should I stay or should I go: VCP/p97-mediated chromatin extraction in the DNA damage response. , 2014, Experimental cell research.

[14]  Y. Shiloh ATM: expanding roles as a chief guardian of genome stability. , 2014, Experimental cell research.

[15]  Nicholas Campion,et al.  Polyubiquitylation drives replisome disassembly at the termination of DNA replication , 2014, Science.

[16]  K. Labib,et al.  Cdc48 and a ubiquitin ligase drive disassembly of the CMG helicase at the end of DNA replication , 2014, Science.

[17]  Peter Nürnberg,et al.  Mutations in SPRTN cause early onset hepatocellular carcinoma, genomic instability and progeroid features , 2014, Nature Genetics.

[18]  Sebastian A. Wagner,et al.  A quantitative 14-3-3 interaction screen connects the nuclear exosome targeting complex to the DNA damage response , 2014, Genes & development.

[19]  J. Gagné,et al.  Germline mutations in BAP1 impair its function in DNA double-strand break repair. , 2014, Cancer research.

[20]  P. Andreassen,et al.  PALB2: the hub of a network of tumor suppressors involved in DNA damage responses. , 2014, Biochimica et biophysica acta.

[21]  B. Strahl,et al.  SET-ting the stage for DNA repair , 2014, Nature Structural &Molecular Biology.

[22]  U. Hassiepen,et al.  Crystal structure of the human COP9 signalosome , 2014, Nature.

[23]  S. Jackson,et al.  Systematic characterization of deubiquitylating enzymes for roles in maintaining genome integrity , 2014, Nature Cell Biology.

[24]  J. Harper,et al.  Structure of a RING E3 Trapped in Action Reveals Ligation Mechanism for the Ubiquitin-like Protein NEDD8 , 2014, Cell.

[25]  E. Lander,et al.  Development and Applications of CRISPR-Cas9 for Genome Engineering , 2014, Cell.

[26]  O. Murina,et al.  FANCD2 and CtIP cooperate to repair DNA interstrand crosslinks. , 2014, Cell reports.

[27]  Xiaofeng Zheng,et al.  RNF168-mediated H2A neddylation antagonizes ubiquitylation of H2A and regulates DNA damage repair , 2014, Journal of Cell Science.

[28]  P. Frit,et al.  Alternative end-joining pathway(s): bricolage at DNA breaks. , 2014, DNA repair.

[29]  D. Durocher,et al.  Mitosis Inhibits DNA Double-Strand Break Repair to Guard Against Telomere Fusions , 2014, Science.

[30]  Christopher E. Berndsen,et al.  New insights into ubiquitin E3 ligase mechanism , 2014, Nature Structural &Molecular Biology.

[31]  H. Ulrich Two-way communications between ubiquitin-like modifiers and DNA , 2014, Nature Structural &Molecular Biology.

[32]  T. Sixma,et al.  Lysine-targeting specificity in ubiquitin and ubiquitin-like modification pathways , 2014, Nature Structural &Molecular Biology.

[33]  S. Jackson,et al.  USP28 Is Recruited to Sites of DNA Damage by the Tandem BRCT Domains of 53BP1 but Plays a Minor Role in Double-Strand Break Metabolism , 2014, Molecular and Cellular Biology.

[34]  H. Naegeli,et al.  Chromatin retention of DNA damage sensors DDB2 and XPC through loss of p97 segregase causes genotoxicity , 2014, Nature Communications.

[35]  E. Lightcap,et al.  Nedd8-Activating Enzyme Inhibitor MLN4924 Provides Synergy with Mitomycin C through Interactions with ATR, BRCA1/BRCA2, and Chromatin Dynamics Pathways , 2014, Molecular Cancer Therapeutics.

[36]  M. Tatham,et al.  SUMO Chain-Induced Dimerization Activates RNF4 , 2014, Molecular cell.

[37]  T. Sixma,et al.  The nucleosome acidic patch plays a critical role in RNF168-dependent ubiquitination of histone H2A , 2014, Nature Communications.

[38]  L. Zou,et al.  PRP19 transforms into a sensor of RPA-ssDNA after DNA damage and drives ATR activation via a ubiquitin-mediated circuitry. , 2014, Molecular cell.

[39]  Jun Huang,et al.  The PSO4 Protein Complex Associates with Replication Protein A (RPA) and Modulates the Activation of Ataxia Telangiectasia-mutated and Rad3-related (ATR)* , 2014, The Journal of Biological Chemistry.

[40]  T. Ludwig,et al.  BRCA 1 Tumor Suppression Depends on BRCT Phosphoprotein Binding , But Not Its E 3 Ligase Activity , 2014 .

[41]  E. Lightcap,et al.  Cancer Biology and Signal Transduction Nedd 8-Activating Enzyme Inhibitor MLN 4924 Provides Synergy with Mitomycin C through Interactions with ATR , BRCA 1 / BRCA 2 , and Chromatin Dynamics Pathways , 2014 .

[42]  Helen Yu,et al.  Tumor suppressor and deubiquitinase BAP1 promotes DNA double-strand break repair , 2013, Proceedings of the National Academy of Sciences.

[43]  J Wade Harper,et al.  Building and remodelling Cullin–RING E3 ubiquitin ligases , 2013, EMBO reports.

[44]  D. Roth,et al.  Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage. , 2013, Annual review of genetics.

[45]  Dawang Zhou,et al.  Ubiquitin E3 Ligase CRL4CDT2/DCAF2 as a Potential Chemotherapeutic Target for Ovarian Surface Epithelial Cancer* , 2013, The Journal of Biological Chemistry.

[46]  A. Jazaeri,et al.  Overcoming Platinum Resistance in Preclinical Models of Ovarian Cancer Using the Neddylation Inhibitor MLN4924 , 2013, Molecular Cancer Therapeutics.

[47]  S. Jackson,et al.  A new method for high-resolution imaging of Ku foci to decipher mechanisms of DNA double-strand break repair , 2013, The Journal of cell biology.

[48]  Chen Wang,et al.  Detection and repair of ionizing radiation-induced DNA double strand breaks: new developments in nonhomologous end joining. , 2013, International journal of radiation oncology, biology, physics.

[49]  D. Durocher,et al.  53BP1 is a reader of the DNA damage-induced H2A Lys15 ubiquitin mark , 2013, Nature.

[50]  Sebastian A. Wagner,et al.  RNF111/Arkadia is a SUMO-targeted ubiquitin ligase that facilitates the DNA damage response , 2013, The Journal of cell biology.

[51]  X. Jacq,et al.  Deubiquitylating Enzymes and DNA Damage Response Pathways , 2013, Cell Biochemistry and Biophysics.

[52]  S. Jackson,et al.  KAT5 tyrosine phosphorylation couples chromatin sensing to ATM signalling , 2013, Nature.

[53]  S. Beausoleil,et al.  Disrupting Protein NEDDylation with MLN4924 Is a Novel Strategy to Target Cisplatin Resistance in Ovarian Cancer , 2013, Clinical Cancer Research.

[54]  S. Jentsch,et al.  Role of Cdc48/p97 as a SUMO-targeted segregase curbing Rad51–Rad52 interaction , 2013, Nature Cell Biology.

[55]  N. Mailand,et al.  The Deubiquitylating Enzyme USP44 Counteracts the DNA Double-strand Break Response Mediated by the RNF8 and RNF168 Ubiquitin Ligases* , 2013, Journal of Biological Chemistry.

[56]  Michael J. Sweredoski,et al.  Cand1 Promotes Assembly of New SCF Complexes through Dynamic Exchange of F Box Proteins , 2013, Cell.

[57]  G. Rabut,et al.  CSN- and CAND1-dependent remodelling of the budding yeast SCF complex , 2013, Nature Communications.

[58]  A. Dejean,et al.  Arkadia, a Novel SUMO-Targeted Ubiquitin Ligase Involved in PML Degradation , 2013, Molecular and Cellular Biology.

[59]  D. Durocher,et al.  Regulation of DNA damage responses by ubiquitin and SUMO. , 2013, Molecular cell.

[60]  Shaomeng Wang,et al.  RNF111-dependent neddylation activates DNA damage-induced ubiquitination. , 2013, Molecular cell.

[61]  Adam P. Rosebrock,et al.  A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice. , 2013, Molecular cell.

[62]  Facundo D. Batista,et al.  RIF1 Is Essential for 53BP1-Dependent Nonhomologous End Joining and Suppression of DNA Double-Strand Break Resection , 2013, Molecular cell.

[63]  J. Toth,et al.  CAND1 controls in vivo dynamics of the Cullin 1-RING ubiquitin ligase repertoire , 2013, Nature Communications.

[64]  E. Bahassi,et al.  Targeting DNA repair mechanisms in cancer. , 2013, Pharmacology & therapeutics.

[65]  Thomas Krausz,et al.  BAP1 and cancer , 2013, Nature Reviews Cancer.

[66]  G. Dianov,et al.  Mammalian Base Excision Repair: the Forgotten Archangel , 2013, Nucleic acids research.

[67]  H. Walczak,et al.  Linear ubiquitination: a newly discovered regulator of cell signalling. , 2013, Trends in biochemical sciences.

[68]  L. Postow,et al.  An SCF complex containing Fbxl12 mediates DNA damage-induced Ku80 ubiquitylation , 2013, Cell cycle.

[69]  J. Harper,et al.  Structural conservation of distinctive N-terminal acetylation-dependent interactions across a family of mammalian NEDD8 ligation enzymes. , 2013, Structure.

[70]  U. Narayanan,et al.  Novel DNA damage checkpoints mediating cell death induced by the NEDD8-activating enzyme inhibitor MLN4924. , 2013, Cancer research.

[71]  Christopher E. Berndsen,et al.  RNF4-Dependent Hybrid SUMO-Ubiquitin Chains Are Signals for RAP80 and Thereby Mediate the Recruitment of BRCA1 to Sites of DNA Damage , 2012, Science Signaling.

[72]  Ying Zhang,et al.  USP44 regulates centrosome positioning to prevent aneuploidy and suppress tumorigenesis. , 2012, The Journal of clinical investigation.

[73]  Nicola J. Curtin,et al.  DNA repair dysregulation from cancer driver to therapeutic target , 2012, Nature Reviews Cancer.

[74]  J. Cook,et al.  Flipping the switch from g1 to s phase with e3 ubiquitin ligases. , 2012, Genes & cancer.

[75]  N. Mailand,et al.  RNF8 and RNF168 but not HERC2 are required for DNA damage-induced ubiquitylation in chicken DT40 cells. , 2012, DNA repair.

[76]  Linda Z. Shi,et al.  The RING Finger Protein RNF8 Ubiquitinates Nbs1 to Promote DNA Double-strand Break Repair by Homologous Recombination* , 2012, The Journal of Biological Chemistry.

[77]  S. V. Nielsen,et al.  DVC1 (C1orf124) is a DNA damage–targeting p97 adaptor that promotes ubiquitin-dependent responses to replication blocks , 2012, Nature Structural &Molecular Biology.

[78]  J. Rouse,et al.  DVC1 (C1orf124) recruits the p97 protein segregase to sites of DNA damage , 2012, Nature Structural &Molecular Biology.

[79]  F. Festy,et al.  The proteasomal de‐ubiquitinating enzyme POH1 promotes the double‐strand DNA break response , 2012, The EMBO journal.

[80]  R. Greenberg,et al.  Links between genome integrity and BRCA1 tumor suppression. , 2012, Trends in biochemical sciences.

[81]  B. Wasylyk,et al.  The NEDD8 conjugation pathway regulates p53 transcriptional activity and head and neck cancer cell sensitivity to ionizing radiation. , 2012, International journal of oncology.

[82]  Matthias Peter,et al.  Structural basis for a reciprocal regulation between SCF and CSN. , 2012, Cell reports.

[83]  Wim Vermeulen,et al.  RNF168 Ubiquitinates K13-15 on H2A/H2AX to Drive DNA Damage Signaling , 2012, Cell.

[84]  S. Boulton,et al.  Playing the end game: DNA double-strand break repair pathway choice. , 2012, Molecular cell.

[85]  B. Neumann,et al.  TRIP12 and UBR5 Suppress Spreading of Chromatin Ubiquitylation at Damaged Chromosomes , 2012, Cell.

[86]  Cheryl H Arrowsmith,et al.  Tandem protein interaction modules organize the ubiquitin-dependent response to DNA double-strand breaks. , 2012, Molecular cell.

[87]  Joanne I. Yeh,et al.  Damaged DNA induced UV-damaged DNA-binding protein (UV-DDB) dimerization and its roles in chromatinized DNA repair , 2012, Proceedings of the National Academy of Sciences.

[88]  James H. Naismith,et al.  Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis , 2012, Nature.

[89]  Raymond J. Deshaies,et al.  Deconjugation of Nedd8 from Cul1 Is Directly Regulated by Skp1-F-box and Substrate, and the COP9 Signalosome Inhibits Deneddylated SCF by a Noncatalytic Mechanism , 2012, The Journal of Biological Chemistry.

[90]  Jie Chen,et al.  Ring Finger Protein RNF169 Antagonizes the Ubiquitin-dependent Signaling Cascade at Sites of DNA Damage* , 2012, The Journal of Biological Chemistry.

[91]  J. Yates,et al.  Dual Recruitment of Cdc48 (p97)-Ufd1-Npl4 Ubiquitin-selective Segregase by Small Ubiquitin-like Modifier Protein (SUMO) and Ubiquitin in SUMO-targeted Ubiquitin Ligase-mediated Genome Stability Functions* , 2012, The Journal of Biological Chemistry.

[92]  Xin Hu,et al.  Rap80 Protein Recruitment to DNA Double-strand Breaks Requires Binding to Both Small Ubiquitin-like Modifier (SUMO) and Ubiquitin Conjugates* , 2012, The Journal of Biological Chemistry.

[93]  H. Ploegh,et al.  Ubiquitin-like proteins. , 2012, Annual review of biochemistry.

[94]  Ivan Dikic,et al.  Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. , 2012, Annual review of biochemistry.

[95]  M. Rapé,et al.  The Ubiquitin Code , 2012, Annual review of biochemistry.

[96]  S. Jackson,et al.  RNF4, a SUMO-targeted ubiquitin E3 ligase, promotes DNA double-strand break repair. , 2012, Genes & development.

[97]  R. Hay,et al.  SUMO-targeted ubiquitin E3 ligase RNF4 is required for the response of human cells to DNA damage. , 2012, Genes & development.

[98]  K. Khanna,et al.  Skp2 E3 ligase integrates ATM activation and homologous recombination repair by ubiquitinating NBS1. , 2012, Molecular cell.

[99]  T. Yap,et al.  Targeting the DNA damage response in oncology: past, present and future perspectives , 2012, Current opinion in oncology.

[100]  N. Mailand,et al.  Human RNF169 is a negative regulator of the ubiquitin-dependent response to DNA double-strand breaks , 2012, The Journal of cell biology.

[101]  A. Groth,et al.  H3K56me1 marks a spot for PCNA. , 2012, Molecular cell.

[102]  J. Sale Competition, collaboration and coordination – determining how cells bypass DNA damage , 2012, Journal of Cell Science.

[103]  E. Lacy,et al.  Essential role of the CUL4B ubiquitin ligase in extra-embryonic tissue development during mouse embryogenesis , 2012, Cell Research.

[104]  Yi Sun,et al.  The p21-Dependent Radiosensitization of Human Breast Cancer Cells by MLN4924, an Investigational Inhibitor of NEDD8 Activating Enzyme , 2012, PloS one.

[105]  I. Matic,et al.  The ubiquitin E1 enzyme Ube1 mediates NEDD8 activation under diverse stress conditions , 2012, Cell cycle.

[106]  C. Wolberger,et al.  The mechanism of OTUB1 inhibition of ubiquitination , 2012, Nature.

[107]  D. Durocher,et al.  OTUB1 co-opts Lys48-linked ubiquitin recognition to suppress E2 enzyme function. , 2012, Molecular cell.

[108]  M. Bug,et al.  Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system , 2012, Nature Cell Biology.

[109]  M. Dai,et al.  Positive regulation of p53 stability and activity by the deubiquitinating enzyme Otubain 1 , 2012, The EMBO journal.

[110]  M. Huang,et al.  Inhibition of the Nedd8 System Sensitizes Cells to DNA Interstrand Cross-linking Agents , 2012, Molecular Cancer Research.

[111]  L. Dick,et al.  Changes in the ratio of free NEDD8 to ubiquitin triggers NEDDylation by ubiquitin enzymes , 2011, The Biochemical journal.

[112]  M. Glover,et al.  The E3 ubiquitin ligase Rnf8 stabilizes Tpp1 to promote telomere end protection , 2012 .

[113]  M. Huang,et al.  Inhibition of the Nedd 8 system sensitizes cells to DNA Inter-strand crosslinking agents , 2012 .

[114]  Hua Li,et al.  Radiosensitization of human pancreatic cancer cells by MLN4924, an investigational NEDD8-activating enzyme inhibitor. , 2012, Cancer research.

[115]  Peter Bouwman,et al.  BRCA1 RING function is essential for tumor suppression but dispensable for therapy resistance. , 2011, Cancer cell.

[116]  Yu Deng,et al.  The E3 ubiquitin ligase Rnf8 stabilizes Tpp1 to promote telomere end protection , 2011, Nature Structural &Molecular Biology.

[117]  Shigenori Iwai,et al.  The Molecular Basis of Crl4(Ddb2/Csa) Ubiquitin Ligase Architecture, Targeting, and Activation. , 2011 .

[118]  K. Sugasawa,et al.  The Molecular Basis of CRL4DDB2/CSA Ubiquitin Ligase Architecture, Targeting, and Activation , 2011, Cell.

[119]  Shreya Paliwal,et al.  The ubiquitin-selective segregase VCP/p97 orchestrates the response to DNA double-strand breaks , 2011, Nature Cell Biology.

[120]  E. Lundberg,et al.  Characterization of MRFAP1 Turnover and Interactions Downstream of the NEDD8 Pathway , 2011, Molecular & Cellular Proteomics.

[121]  T. Ludwig,et al.  BRCA1 Tumor Suppression Depends on BRCT Phosphoprotein Binding, But Not Its E3 Ligase Activity , 2011, Science.

[122]  Michael J. Emanuele,et al.  Global Identification of Modular Cullin-RING Ligase Substrates , 2011, Cell.

[123]  Angela T. Noon,et al.  53BP1-mediated DNA double strand break repair: insert bad pun here. , 2011, DNA Repair.

[124]  J. Harper,et al.  A genome-wide screen identifies p97 as an essential regulator of DNA damage-dependent CDT1 destruction. , 2011, Molecular cell.

[125]  L. Postow Destroying the ring: Freeing DNA from Ku with ubiquitin , 2011, FEBS letters.

[126]  Marieke H. Peuscher,et al.  DNA-damage response and repair activities at uncapped telomeres depend on RNF8 , 2011, Nature Cell Biology.

[127]  A. Durandy,et al.  Insights into the B cell specific process of immunoglobulin class switch recombination. , 2011, Immunology letters.

[128]  Lan Huang,et al.  Mono-ubiquitination Drives Nuclear Export of the Human DCN1-like Protein hDCNL1* , 2011, The Journal of Biological Chemistry.

[129]  S. Keeney,et al.  The E3 ubiquitin ligase Cullin 4A regulates meiotic progression in mouse spermatogenesis. , 2011, Developmental biology.

[130]  Thomas Helleday,et al.  The underlying mechanism for the PARP and BRCA synthetic lethality: Clearing up the misunderstandings , 2011, Molecular oncology.

[131]  J. Walter,et al.  Mechanism of CRL4(Cdt2), a PCNA-dependent E3 ubiquitin ligase. , 2011, Genes & development.

[132]  Stephen C. West,et al.  DNA interstrand crosslink repair and cancer , 2011, Nature Reviews Cancer.

[133]  E. Nam,et al.  ATR signalling: more than meeting at the fork. , 2011, The Biochemical journal.

[134]  Lijun Jia,et al.  Induction of p21-dependent senescence by an NAE inhibitor, MLN4924, as a mechanism of growth suppression. , 2011, Neoplasia.

[135]  Anindya Dutta,et al.  Selective Ubiquitylation of p21 and Cdt1 by UBCH8 and UBE2G Ubiquitin-Conjugating Enzymes via the CRL4Cdt2 Ubiquitin Ligase Complex , 2011, Molecular and Cellular Biology.

[136]  D. Xirodimas,et al.  The Essential Functions of NEDD8 Are Mediated via Distinct Surface Regions, and Not by Polyneddylation in Schizosaccharomyces pombe , 2011, PloS one.

[137]  Benjamin P. C. Chen,et al.  RING Finger and WD Repeat Domain 3 (RFWD3) Associates with Replication Protein A (RPA) and Facilitates RPA-mediated DNA Damage Response* , 2011, The Journal of Biological Chemistry.

[138]  Thomas Hartmann,et al.  The cullin protein family , 2011, Genome Biology.

[139]  Junjie Chen,et al.  E3 Ligase RFWD3 Participates in Replication Checkpoint Control* , 2011, The Journal of Biological Chemistry.

[140]  U. Narayanan,et al.  Inhibition of NEDD8-activating enzyme induces rereplication and apoptosis in human tumor cells consistent with deregulating CDT1 turnover. , 2011, Cancer research.

[141]  Jinrong Min,et al.  Structure and function of WD40 domain proteins , 2011, Protein & Cell.

[142]  N. Zheng,et al.  Structural regulation of cullin-RING ubiquitin ligase complexes. , 2011, Current opinion in structural biology.

[143]  B. Sobhian,et al.  RAP80-directed tuning of BRCA1 homologous recombination function at ionizing radiation-induced nuclear foci. , 2011, Genes & development.

[144]  H. Tauchi,et al.  Regulation of homologous recombination by RNF20-dependent H2B ubiquitination. , 2011, Molecular cell.

[145]  Bernhard Kuster,et al.  Requirement of ATM-dependent monoubiquitylation of histone H2B for timely repair of DNA double-strand breaks. , 2011, Molecular cell.

[146]  S. Jackson,et al.  Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. , 2011, Genes & development.

[147]  M. Ohh,et al.  NEDD8 pathways in cancer, Sine Quibus Non. , 2011, Cancer cell.

[148]  J. Walter,et al.  Mechanism of CRL 4 Cdt 2 , a PCNA-dependent E 3 ubiquitin ligase , 2011 .

[149]  U. Narayanan,et al.  Inhibition of NEDD 8-Activating Enzyme Induces Rereplication and Apoptosis in Human Tumor Cells Consistent with Deregulating CDT 1 Turnover , 2011 .

[150]  Anindya Dutta,et al.  NEDD8-targeting drug MLN4924 elicits DNA rereplication by stabilizing Cdt1 in S phase, triggering checkpoint activation, apoptosis, and senescence in cancer cells. , 2010, Cancer research.

[151]  Steven P. Gygi,et al.  Dynamics of Cullin-RING Ubiquitin Ligase Network Revealed by Systematic Quantitative Proteomics , 2010, Cell.

[152]  S. Confalonieri,et al.  UMI, a Novel RNF168 Ubiquitin Binding Domain Involved in the DNA Damage Signaling Pathway , 2010, Molecular and Cellular Biology.

[153]  Claude Sardet,et al.  The histone H4 Lys 20 methyltransferase PR-Set7 regulates replication origins in mammalian cells , 2010, Nature Cell Biology.

[154]  S. Elledge,et al.  The DNA damage response: making it safe to play with knives. , 2010, Molecular cell.

[155]  N. Karnani,et al.  CRL4(Cdt2) regulates cell proliferation and histone gene expression by targeting PR-Set7/Set8 for degradation. , 2010, Molecular cell.

[156]  M. Weitzman,et al.  The MRN complex in double‐strand break repair and telomere maintenance , 2010, FEBS letters.

[157]  B. Schulman,et al.  A dual E3 mechanism for Rub1 ligation to Cdc53. , 2010, Molecular cell.

[158]  A. Gingras,et al.  Non-canonical inhibition of DNA damage-dependent ubiquitination by OTUB1 , 2010, Nature.

[159]  T. Ohta,et al.  HERC2 is an E3 ligase that targets BRCA1 for degradation. , 2010, Cancer research.

[160]  S. Jackson,et al.  DNA damage signaling in response to double-strand breaks during mitosis , 2010, The Journal of cell biology.

[161]  J Wade Harper,et al.  A genetic screen identifies FAN1, a Fanconi anemia-associated nuclease necessary for DNA interstrand crosslink repair. , 2010, Molecular cell.

[162]  M. Hengartner,et al.  Deficiency of FANCD2-Associated Nuclease KIAA1018/FAN1 Sensitizes Cells to Interstrand Crosslinking Agents , 2010, Cell.

[163]  Kay Hofmann,et al.  Identification of KIAA1018/FAN1, a DNA Repair Nuclease Recruited to DNA Damage by Monoubiquitinated FANCD2 , 2010, Cell.

[164]  R. Greenberg,et al.  ATM-Dependent Chromatin Changes Silence Transcription In cis to DNA Double-Strand Breaks , 2010, Cell.

[165]  Jeremy M. Stark,et al.  53BP1 Inhibits Homologous Recombination in Brca1-Deficient Cells by Blocking Resection of DNA Breaks , 2010, Cell.

[166]  H. Timmers,et al.  The family of ubiquitin‐conjugating enzymes (E2s): deciding between life and death of proteins , 2010, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[167]  J. Qin,et al.  RFWD3–Mdm2 ubiquitin ligase complex positively regulates p53 stability in response to DNA damage , 2010, Proceedings of the National Academy of Sciences.

[168]  Junjie Chen,et al.  BRCA1 and its toolbox for the maintenance of genome integrity , 2010, Nature Reviews Molecular Cell Biology.

[169]  Ping Li,et al.  Substrate-assisted inhibition of ubiquitin-like protein-activating enzymes: the NEDD8 E1 inhibitor MLN4924 forms a NEDD8-AMP mimetic in situ. , 2010, Molecular cell.

[170]  T. Ohta,et al.  HERC 2 Is an E 3 Ligase That Targets BRCA 1 for Degradation , 2010 .

[171]  N. Mailand,et al.  HERC2 coordinates ubiquitin-dependent assembly of DNA repair factors on damaged chromosomes , 2010, Nature Cell Biology.

[172]  A. Ashworth,et al.  Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. , 2009, The New England journal of medicine.

[173]  Javier Benítez,et al.  Comprehensive characterization of the DNA amplification at 13q34 in human breast cancer reveals TFDP1 and CUL4A as likely candidate target genes , 2009, Breast Cancer Research.

[174]  J. Bartek,et al.  The DNA-damage response in human biology and disease , 2009, Nature.

[175]  D. Komander The emerging complexity of protein ubiquitination. , 2009, Biochemical Society transactions.

[176]  Geng-Hung Liu,et al.  Regulation of nucleolar signalling to p53 through NEDDylation of L11 , 2009, EMBO reports.

[177]  K. Hofmann,et al.  F-box-directed CRL complex assembly and regulation by the CSN and CAND1. , 2009, Molecular cell.

[178]  J. Petrini,et al.  Taking the time to make important decisions: the checkpoint effector kinases Chk1 and Chk2 and the DNA damage response. , 2009, DNA repair.

[179]  Nianxiang Zhang,et al.  Cdc5L interacts with ATR and is required for the S‐phase cell‐cycle checkpoint , 2009, EMBO reports.

[180]  David Komander,et al.  Breaking the chains: structure and function of the deubiquitinases , 2009, Nature Reviews Molecular Cell Biology.

[181]  I. Sumara,et al.  The human Dcn1-like protein DCNL3 promotes Cul3 neddylation at membranes , 2009, Proceedings of the National Academy of Sciences.

[182]  D. Finley,et al.  Recognition and processing of ubiquitin-protein conjugates by the proteasome. , 2009, Annual review of biochemistry.

[183]  Keith D Wilkinson,et al.  Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. , 2009, Annual review of biochemistry.

[184]  R. Deshaies,et al.  RING domain E3 ubiquitin ligases. , 2009, Annual review of biochemistry.

[185]  A. Koff,et al.  CUL4A abrogation augments DNA damage response and protection against skin carcinogenesis. , 2009, Molecular cell.

[186]  J. Wade Harper,et al.  Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways , 2009, Nature Reviews Molecular Cell Biology.

[187]  Amanda Doucette,et al.  An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer , 2009, Nature.

[188]  John Rush,et al.  Quantitative Proteomics Reveals the Function of Unconventional Ubiquitin Chains in Proteasomal Degradation , 2009, Cell.

[189]  M. Yaffe,et al.  Kinases that control the cell cycle in response to DNA damage: Chk1, Chk2, and MK2. , 2009, Current opinion in cell biology.

[190]  M. Hochstrasser,et al.  Origin and function of ubiquitin-like proteins , 2009, Nature.

[191]  M. Roussel,et al.  E2-RING expansion of the NEDD8 cascade confers specificity to cullin modification. , 2009, Molecular cell.

[192]  Edward S. Miller,et al.  The RIDDLE Syndrome Protein Mediates a Ubiquitin-Dependent Signaling Cascade at Sites of DNA Damage , 2009, Cell.

[193]  J. Ellenberg,et al.  RNF168 Binds and Amplifies Ubiquitin Conjugates on Damaged Chromosomes to Allow Accumulation of Repair Proteins , 2009, Cell.

[194]  S. Lees-Miller,et al.  Repair of ionizing radiation-induced DNA double-strand breaks by non-homologous end-joining. , 2009, The Biochemical journal.

[195]  S. Tornaletti DNA Repair in Mammalian Cells , 2009, Cellular and Molecular Life Sciences.

[196]  C. Robinson,et al.  Symmetrical modularity of the COP9 signalosome complex suggests its multifunctionality. , 2009, Structure.

[197]  David J. Chen,et al.  A DNA-PKcs mutation in a radiosensitive T-B- SCID patient inhibits Artemis activation and nonhomologous end-joining. , 2008, The Journal of clinical investigation.

[198]  T. Ludwig,et al.  E3 ligase activity of BRCA1 is not essential for mammalian cell viability or homology-directed repair of double-strand DNA breaks , 2008, Proceedings of the National Academy of Sciences.

[199]  P. Jeffrey,et al.  Structural Basis of UV DNA-Damage Recognition by the DDB1–DDB2 Complex , 2008, Cell.

[200]  Bhuvanesh Singh,et al.  SCCRO (DCUN1D1) Is an Essential Component of the E3 Complex for Neddylation* , 2008, Journal of Biological Chemistry.

[201]  Zhefu Ma,et al.  Disassembly of MDC1 Foci Is Controlled by Ubiquitin-Proteasome-dependent Degradation* , 2008, Journal of Biological Chemistry.

[202]  M. Peter,et al.  Function and regulation of protein neddylation , 2008, EMBO reports.

[203]  Daniel C. Scott,et al.  Structural Insights into NEDD8 Activation of Cullin-RING Ligases: Conformational Control of Conjugation , 2008, Cell.

[204]  Daniel J Klionsky,et al.  The Atg8 and Atg12 ubiquitin‐like conjugation systems in macroautophagy , 2008, EMBO reports.

[205]  B. Chait,et al.  Ku80 removal from DNA through double strand break–induced ubiquitylation , 2008, The Journal of cell biology.

[206]  Keith W. Caldecott,et al.  Single-strand break repair and genetic disease , 2008, Nature Reviews Genetics.

[207]  K. Cimprich,et al.  ATR: an essential regulator of genome integrity , 2008, Nature Reviews Molecular Cell Biology.

[208]  M. Roussel,et al.  Structural Dissection of a Gating Mechanism Preventing Misactivation of Ubiquitin by NEDD8’s E1 , 2008, Biochemistry.

[209]  Ivan Dikic,et al.  Atypical ubiquitin chains: new molecular signals , 2008, EMBO reports.

[210]  D. Xirodimas,et al.  Ribosomal proteins are targets for the NEDD8 pathway , 2008, EMBO reports.

[211]  Jeffrey J. Jones,et al.  A targeted proteomic analysis of the ubiquitin-like modifier nedd8 and associated proteins. , 2008, Journal of proteome research.

[212]  M. Tyers,et al.  Dcn1 functions as a scaffold-type E3 ligase for cullin neddylation. , 2008, Molecular cell.

[213]  David J. Chen,et al.  Ku recruits XLF to DNA double‐strand breaks , 2008, EMBO reports.

[214]  L. Mullenders,et al.  Transcription-coupled nucleotide excision repair in mammalian cells: molecular mechanisms and biological effects , 2008, Cell Research.

[215]  J. Sale,et al.  Deubiquitination of FANCD2 Is Required for DNA Crosslink Repair , 2007, Molecular cell.

[216]  Laurence Pelletier,et al.  Orchestration of the DNA-Damage Response by the RNF8 Ubiquitin Ligase , 2007, Science.

[217]  Michael B. Yaffe,et al.  RNF8 Transduces the DNA-Damage Signal via Histone Ubiquitylation and Checkpoint Protein Assembly , 2007, Cell.

[218]  Jiri Bartek,et al.  RNF8 Ubiquitylates Histones at DNA Double-Strand Breaks and Promotes Assembly of Repair Proteins , 2007, Cell.

[219]  Jiri Bartek,et al.  Human CtIP promotes DNA end resection , 2007, Nature.

[220]  Edward S. Miller,et al.  RIDDLE immunodeficiency syndrome is linked to defects in 53BP1-mediated DNA damage signaling , 2007, Proceedings of the National Academy of Sciences.

[221]  Michael M. Murphy,et al.  IgH class switching and translocations use a robust non-classical end-joining pathway , 2007, Nature.

[222]  John A Tainer,et al.  SUMO‐targeted ubiquitin ligases in genome stability , 2007, The EMBO journal.

[223]  Pengbo Zhou,et al.  DCAFs, the missing link of the CUL4-DDB1 ubiquitin ligase. , 2007, Molecular cell.

[224]  Eng-Hui Chew,et al.  Substrate-mediated Regulation of Cullin Neddylation* , 2007, Journal of Biological Chemistry.

[225]  P. Jeggo,et al.  Interaction of the Ku heterodimer with the DNA ligase IV/Xrcc4 complex and its regulation by DNA-PK. , 2007, DNA repair.

[226]  B. A. Ballif,et al.  ATM and ATR Substrate Analysis Reveals Extensive Protein Networks Responsive to DNA Damage , 2007, Science.

[227]  Burkhard Jakob,et al.  Autophosphorylation of DNA-PKCS regulates its dynamics at DNA double-strand breaks , 2007, The Journal of cell biology.

[228]  Viji M. Draviam,et al.  Anaphase initiation is regulated by antagonistic ubiquitination and deubiquitination activities , 2007, Nature.

[229]  Michael B Yaffe,et al.  p53-deficient cells rely on ATM- and ATR-mediated checkpoint signaling through the p38MAPK/MK2 pathway for survival after DNA damage. , 2007, Cancer cell.

[230]  Andrew Menzies,et al.  Mutations in CUL4B, which encodes a ubiquitin E3 ligase subunit, cause an X-linked mental retardation syndrome associated with aggressive outbursts, seizures, relative macrocephaly, central obesity, hypogonadism, pes cavus, and tremor. , 2007, American journal of human genetics.

[231]  Howard Riezman,et al.  Proteasome-Independent Functions of Ubiquitin in Endocytosis and Signaling , 2007, Science.

[232]  Jeroen A. A. Demmers,et al.  Dynamic assembly of end-joining complexes requires interaction between Ku70/80 and XRCC4 , 2006, Proceedings of the National Academy of Sciences.

[233]  George Iliakis,et al.  PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways , 2006, Nucleic acids research.

[234]  Keiji Tanaka,et al.  A ubiquitin ligase complex assembles linear polyubiquitin chains , 2006, The EMBO journal.

[235]  J. Sale,et al.  RAD18‐independent ubiquitination of proliferating‐cell nuclear antigen in the avian cell line DT40 , 2006, EMBO reports.

[236]  Anindya Dutta,et al.  UBE2T is the E2 in the Fanconi anemia pathway and undergoes negative autoregulation. , 2006, Molecular cell.

[237]  T. Mak,et al.  A Role for the Deubiquitinating Enzyme USP28 in Control of the DNA-Damage Response , 2006, Cell.

[238]  Jiri Bartek,et al.  Destruction of Claspin by SCFbetaTrCP restrains Chk1 activation and facilitates recovery from genotoxic stress. , 2006, Molecular cell.

[239]  Michele Pagano,et al.  SCFbetaTrCP-mediated degradation of Claspin regulates recovery from the DNA replication checkpoint response. , 2006, Molecular cell.

[240]  H. Leonhardt,et al.  Differential recruitment of DNA Ligase I and III to DNA repair sites , 2006, Nucleic Acids Research.

[241]  Anindya Dutta,et al.  An ATR- and BRCA1-Mediated Fanconi Anemia Pathway Is Required for Activating the G2/M Checkpoint and DNA Damage Repair upon Rereplication , 2006, Molecular and Cellular Biology.

[242]  Hengbin Wang,et al.  Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage. , 2006, Molecular cell.

[243]  J. Jiricny The multifaceted mismatch-repair system , 2006, Nature Reviews Molecular Cell Biology.

[244]  Jiri Bartek,et al.  Spatial organization of the mammalian genome surveillance machinery in response to DNA strand breaks , 2006, The Journal of cell biology.

[245]  M. Schlissel,et al.  Leukemia and lymphoma: a cost of doing business for adaptive immunity. , 2006, Genes & development.

[246]  Jiri Bartek,et al.  ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks , 2006, Nature Cell Biology.

[247]  M. Yaffe,et al.  MDC1 Directly Binds Phosphorylated Histone H2AX to Regulate Cellular Responses to DNA Double-Strand Breaks , 2005, Cell.

[248]  G. Wider,et al.  Ubiquitin-Binding Domains in Y-Family Polymerases Regulate Translesion Synthesis , 2005, Science.

[249]  F. Cross,et al.  Disruption of Mechanisms That Prevent Rereplication Triggers a DNA Damage Response , 2005, Molecular and Cellular Biology.

[250]  Linda Hicke,et al.  Ubiquitin-binding domains , 2005, Nature Reviews Molecular Cell Biology.

[251]  Nurhan Özlü,et al.  The conserved protein DCN-1/Dcn1p is required for cullin neddylation in C. elegans and S. cerevisiae , 2005, Nature.

[252]  Keiji Tanaka,et al.  UV-Induced Ubiquitylation of XPC Protein Mediated by UV-DDB-Ubiquitin Ligase Complex , 2005, Cell.

[253]  Ji-Hoon Lee,et al.  ATM Activation by DNA Double-Strand Breaks Through the Mre11-Rad50-Nbs1 Complex , 2005, Science.

[254]  Thomas Helleday,et al.  Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase , 2005, Nature.

[255]  Alan Ashworth,et al.  Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy , 2005, Nature.

[256]  Stephen P. Jackson,et al.  Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage , 2005, Nature.

[257]  René Bernards,et al.  The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway. , 2005, Molecular cell.

[258]  J. Holton,et al.  Structural basis for recruitment of Ubc12 by an E2 binding domain in NEDD8's E1. , 2005, Molecular cell.

[259]  Michael B Yaffe,et al.  MAPKAP kinase-2 is a cell cycle checkpoint kinase that regulates the G2/M transition and S phase progression in response to UV irradiation. , 2005, Molecular cell.

[260]  Raymond J. Deshaies,et al.  Function and regulation of cullin–RING ubiquitin ligases , 2005, Nature Reviews Molecular Cell Biology.

[261]  Tom J. Petty,et al.  Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks , 2004, Nature.

[262]  Michio Kawasuji,et al.  Rad18 guides polη to replication stalling sites through physical interaction and PCNA monoubiquitination , 2004, The EMBO journal.

[263]  P. Jeggo,et al.  An overview of three new disorders associated with genetic instability: LIG4 syndrome, RS-SCID and ATR-Seckel syndrome. , 2004, DNA repair.

[264]  T. Pandita,et al.  The role of the DNA double-strand break response network in meiosis. , 2004, DNA repair.

[265]  F. Alt,et al.  The cellular response to general and programmed DNA double strand breaks. , 2004, DNA repair.

[266]  D. Lane,et al.  Mdm2-Mediated NEDD8 Conjugation of p53 Inhibits Its Transcriptional Activity , 2004, Cell.

[267]  A. Sancar,et al.  Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. , 2004, Annual review of biochemistry.

[268]  A. Lehmann,et al.  Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. , 2004, Molecular cell.

[269]  P. Jeggo,et al.  ATM and DNA-PK Function Redundantly to Phosphorylate H2AX after Exposure to Ionizing Radiation , 2004, Cancer Research.

[270]  Takeshi Imamura,et al.  Arkadia amplifies TGF‐β superfamily signalling through degradation of Smad7 , 2003 .

[271]  David W. Miller,et al.  The structure of the APPBP1-UBA3-NEDD8-ATP complex reveals the basis for selective ubiquitin-like protein activation by an E1. , 2003, Molecular cell.

[272]  Yair Andegeko,et al.  Requirement of the MRN complex for ATM activation by DNA damage , 2003, The EMBO journal.

[273]  W. Tsai,et al.  The Prp19p-Associated Complex in Spliceosome Activation , 2003, Science.

[274]  C. Bishop,et al.  A novel ubiquitin ligase is deficient in Fanconi anemia , 2003, Nature Genetics.

[275]  Mitsuko Masutani,et al.  A requirement for PARP-1 for the assembly or stability of XRCC1 nuclear foci at sites of oxidative DNA damage. , 2003, Nucleic acids research.

[276]  A. Haas,et al.  Conservation in the Mechanism of Nedd8 Activation by the Human AppBp1-Uba3 Heterodimer* , 2003, Journal of Biological Chemistry.

[277]  R. Hay,et al.  NEDP1, a Highly Conserved Cysteine Protease That deNEDDylates Cullins* , 2003, Journal of Biological Chemistry.

[278]  Stephen J. Elledge,et al.  Sensing DNA Damage Through ATRIP Recognition of RPA-ssDNA Complexes , 2003, Science.

[279]  Jun-ichi Sawada,et al.  The Ubiquitin Ligase Activity in the DDB2 and CSA Complexes Is Differentially Regulated by the COP9 Signalosome in Response to DNA Damage , 2003, Cell.

[280]  Jiri Bartek,et al.  Chk1 and Chk2 kinases in checkpoint control and cancer. , 2003, Cancer cell.

[281]  M. Naumann,et al.  Fission yeast COP9/signalosome suppresses cullin activity through recruitment of the deubiquitylating enzyme Ubp12p. , 2003, Molecular cell.

[282]  Judith A. Goodship,et al.  A splicing mutation affecting expression of ataxia–telangiectasia and Rad3–related protein (ATR) results in Seckel syndrome , 2003, Nature Genetics.

[283]  J. Gautier,et al.  An ATR- and Cdc7-dependent DNA damage checkpoint that inhibits initiation of DNA replication. , 2003, Molecular cell.

[284]  Hui Zhang,et al.  CAND1 binds to unneddylated CUL1 and regulates the formation of SCF ubiquitin E3 ligase complex. , 2002, Molecular cell.

[285]  Jidong Liu,et al.  NEDD8 modification of CUL1 dissociates p120(CAND1), an inhibitor of CUL1-SKP1 binding and SCF ligases. , 2002, Molecular cell.

[286]  E. Appella,et al.  Chk2‐deficient mice exhibit radioresistance and defective p53‐mediated transcription , 2002, The EMBO journal.

[287]  P. Jeggo,et al.  Chk2 Is a Tumor Suppressor That Regulates Apoptosis in both an Ataxia Telangiectasia Mutated (ATM)-Dependent and an ATM-Independent Manner , 2002, Molecular and Cellular Biology.

[288]  Boris Pfander,et al.  RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO , 2002, Nature.

[289]  L. Aravind,et al.  Role of Predicted Metalloprotease Motif of Jab1/Csn5 in Cleavage of Nedd8 from Cul1 , 2002, Science.

[290]  G. Chu,et al.  Xeroderma pigmentosum complementation group E and UV-damaged DNA-binding protein. , 2002, DNA repair.

[291]  David J. Chen,et al.  Defining interactions between DNA-PK and ligase IV/XRCC4. , 2002, DNA repair.

[292]  Ning Wei,et al.  COP 9 : A New Genetic Locus lnvolved in Light-Regulated Development and Gene Expression in Arabidopsis , 2002 .

[293]  K. Nakayama,et al.  U Box Proteins as a New Family of Ubiquitin-Protein Ligases* , 2001, The Journal of Biological Chemistry.

[294]  J. Walker,et al.  Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair , 2001, Nature.

[295]  R. Kanaar,et al.  DNA-binding and strand-annealing activities of human Mre11: implications for its roles in DNA double-strand break repair pathways. , 2001, Nucleic acids research.

[296]  P. Frit,et al.  Ku Entry into DNA Inhibits Inward DNA Transactions in Vitro * , 2000, The Journal of Biological Chemistry.

[297]  Alexander Varshavsky,et al.  The ubiquitin system. , 1998, Annual review of biochemistry.

[298]  M. Molinari,et al.  Human Cdc25 A inactivation in response to S phase inhibition and its role in preventing premature mitosis , 2000, EMBO reports.

[299]  S. T. Kim,et al.  Substrate Specificities and Identification of Putative Substrates of ATM Kinase Family Members* , 1999, The Journal of Biological Chemistry.

[300]  R. Conaway,et al.  The Rbx1 subunit of SCF and VHL E3 ubiquitin ligase activates Rub1 modification of cullins Cdc53 and Cul2. , 1999, Genes & development.

[301]  T. Paull,et al.  Nbs1 potentiates ATP-driven DNA unwinding and endonuclease cleavage by the Mre11/Rad50 complex. , 1999, Genes & development.

[302]  David J. Chen,et al.  Requirement for the Kinase Activity of Human DNA-Dependent Protein Kinase Catalytic Subunit in DNA Strand Break Rejoining , 1999, Molecular and Cellular Biology.

[303]  E. Yeh,et al.  Identification of the Activating and Conjugating Enzymes of the NEDD8 Conjugation Pathway* , 1999, The Journal of Biological Chemistry.

[304]  S. Jentsch,et al.  A Novel Ubiquitination Factor, E4, Is Involved in Multiubiquitin Chain Assembly , 1999, Cell.

[305]  S. Lees-Miller,et al.  Relative affinities of poly(ADP-ribose) polymerase and DNA-dependent protein kinase for DNA strand interruptions. , 1999, Biochimica et biophysica acta.

[306]  C. Hill,et al.  Crystal Structure of the Human Ubiquitin-like Protein NEDD8 and Interactions with Ubiquitin Pathway Enzymes* , 1998, The Journal of Biological Chemistry.

[307]  T. Ogawa,et al.  Complex Formation and Functional Versatility of Mre11 of Budding Yeast in Recombination , 1998, Cell.

[308]  L. Caskey,et al.  Cleavage of the C-terminus of NEDD8 by UCH-L3. , 1998, Biochemical and biophysical research communications.

[309]  P. Sung,et al.  Nuclease Activities in a Complex of Human Recombination and DNA Repair Factors Rad50, Mre11, and p95* , 1998, The Journal of Biological Chemistry.

[310]  H. Kawasaki,et al.  A new NEDD8-ligating system for cullin-4A. , 1998, Genes & development.

[311]  T. Paull,et al.  The 3' to 5' exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks. , 1998, Molecular cell.

[312]  S. Jentsch,et al.  A novel protein modification pathway related to the ubiquitin system , 1998, The EMBO journal.

[313]  M. Goebl,et al.  Modification of yeast Cdc53p by the ubiquitin-related protein rub1p affects function of the SCFCdc4 complex. , 1998, Genes & development.

[314]  E. Rogakou,et al.  DNA Double-stranded Breaks Induce Histone H2AX Phosphorylation on Serine 139* , 1998, The Journal of Biological Chemistry.

[315]  D. Ramsden,et al.  Ku protein stimulates DNA end joining by mammalian DNA ligases: a direct role for Ku in repair of DNA double‐strand breaks , 1998, The EMBO journal.

[316]  S. Jackson,et al.  The DNA-dependent protein kinase , 1999 .

[317]  E. Yeh,et al.  Characterization of NEDD8, a Developmentally Down-regulated Ubiquitin-like Protein* , 1997, The Journal of Biological Chemistry.

[318]  Yosef Shiloh,et al.  Recombinant ATM protein complements the cellular A-T phenotype , 1997, Oncogene.

[319]  M. Chaudhry,et al.  Interaction of DNA-dependent protein kinase and poly(ADP-ribose) polymerase with radiation-induced DNA strand breaks. , 1997, Radiation research.

[320]  J. Wang,et al.  DNA looping by Ku and the DNA-dependent protein kinase. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[321]  J. Petrini,et al.  Human Rad50 is physically associated with human Mre11: identification of a conserved multiprotein complex implicated in recombinational DNA repair , 1996, Molecular and cellular biology.

[322]  P. Tucker,et al.  Ku is a general inhibitor of DNA-protein complex formation and transcription. , 1996, Molecular immunology.

[323]  F. Alt,et al.  Defective DNA-dependent protein kinase activity is linked to V(D)J recombination and DNA repair defects associated with the murine scid mutation , 1995, Cell.

[324]  P. Jeggo,et al.  DNA-dependent protein kinase activity is absent in xrs-6 cells: implications for site-specific recombination and DNA double-strand break repair. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[325]  S. Leem,et al.  Functions of the yeast meiotic recombination genes, MRE11 and MRE2. , 1995, Advances in biophysics.

[326]  M. Lieber,et al.  Restoration of X-ray resistance and V(D)J recombination in mutant cells by Ku cDNA. , 1994, Science.

[327]  F. Alt,et al.  Ku80: product of the XRCC5 gene and its role in DNA repair and V(D)J recombination. , 1994, Science.

[328]  A. Haas,et al.  Site-directed mutagenesis of ubiquitin. Differential roles for arginine in the interaction with ubiquitin-activating enzyme. , 1994, Biochemistry.

[329]  C. Pickart,et al.  Substrate properties of site-specific mutant ubiquitin protein (G76A) reveal unexpected mechanistic features of ubiquitin-activating enzyme (E1). , 1994, The Journal of biological chemistry.

[330]  G. Poirier,et al.  Poly(ADP-ribose) polymerase can bind melphalan damaged DNA. , 1993, Cancer research.

[331]  T. Lindahl Instability and decay of the primary structure of DNA , 1993, Nature.

[332]  S. Jackson,et al.  The DNA-dependent protein kinase: Requirement for DNA ends and association with Ku antigen , 1993, Cell.

[333]  N. Wei,et al.  COP9: a new genetic locus involved in light-regulated development and gene expression in arabidopsis. , 1992, The Plant cell.

[334]  S. Kumar,et al.  Identification of a set of genes with developmentally down-regulated expression in the mouse brain. , 1992, Biochemical and biophysical research communications.

[335]  T. Mimori,et al.  Ku polypeptides synthesized in vitro assemble into complexes which recognize ends of double-stranded DNA. , 1992, The Journal of biological chemistry.

[336]  A. Arnberg,et al.  HeLa nuclear protein recognizing DNA termini and translocating on DNA forming a regular DNA-multimeric protein complex. , 1989, Journal of molecular biology.

[337]  Alexander Varshavsky,et al.  The yeast DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme , 1987, Nature.

[338]  A. Varshavsky,et al.  The yeast ubiquitin genes: a family of natural gene fusions. , 1987, The EMBO journal.

[339]  R. Baker,et al.  The human ubiquitin gene family: structure of a gene and pseudogenes from the Ub B subfamily. , 1987, Nucleic acids research.

[340]  J. Steitz,et al.  Characterization of the DNA-binding protein antigen Ku recognized by autoantibodies from patients with rheumatic disorders. , 1986, The Journal of biological chemistry.

[341]  J. Vuust,et al.  The human ubiquitin multigene family: some genes contain multiple directly repeated ubiquitin coding sequences. , 1985, The EMBO journal.

[342]  A. Ciechanover,et al.  Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. , 1983, The Journal of biological chemistry.

[343]  A. Ciechanover,et al.  "Covalent affinity" purification of ubiquitin-activating enzyme. , 1982, The Journal of biological chemistry.

[344]  A. Haas,et al.  Ubiquitin is the ATP-dependent proteolysis factor I of rabbit reticulocytes. , 1980, The Journal of biological chemistry.

[345]  A Ciechanover,et al.  Proposed role of ATP in protein breakdown: conjugation of protein with multiple chains of the polypeptide of ATP-dependent proteolysis. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[346]  A. Hershko,et al.  A heat-stable polypeptide component of an ATP-dependent proteolytic system from reticulocytes. , 1978, Biochemical and biophysical research communications.

[347]  K. Miyazono,et al.  Arkadia ampli ® es TGF-b superfamily signalling through degradation of Smad 7 , 2022 .

[348]  N. Mailand,et al.  Human RNF 169 is a negative regulator of the ubiquitin-dependent response to DNA double-strand breaks , 2022 .

[349]  Sebastian A. Wagner,et al.  RNF 111 / Arkadia is a SUMO-targeted ubiquitin ligase that facilitates the DNA damage response , 2022 .