Valuation of boundary-linked assets by stochastic boundary value problems solved with a wavelet-collocation algorithm

This article studies the valuation of boundary-linked assets and their derivatives in continuous-time markets. Valuing boundary-linked assets requires the solution of a stochastic differential equation with boundary conditions, which, often, is not Markovian. We propose a wavelet-collocation algorithm for solving a Milstein approximation to the stochastic boundary problem. Its convergence properties are studied. Furthermore, we value boundary-linked derivatives using Malliavin calculus and Monte Carlo methods. We apply these ideas to value European call options of boundary-linked assets.

[1]  Vidar Thomée,et al.  Convergence estimates for semi-discrete galerkin methods for initial-value problems , 1973 .

[2]  Robert D. Russell,et al.  Numerical solution of boundary value problems for ordinary differential equations , 1995, Classics in applied mathematics.

[3]  Y. Meyer Wavelets and Operators , 1993 .

[4]  David Nualart,et al.  Second order stochastic di erential equations with Dirichlet boundary conditions , 1991 .

[5]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[6]  Werner C. Rheinboldt,et al.  Methods for Solving Systems of Nonlinear Equations: Second Edition , 1998 .

[7]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[8]  E. A. Galperin,et al.  Global optimization in Rn with box constraints and applications: A Maple code , 2003 .

[9]  Bernt Øksendal,et al.  Stochastic Partial Differential Equations: A Modeling, White Noise Functional Approach , 1996 .

[10]  William A. Brock,et al.  Stochastic methods in economics and finance , 1982 .

[11]  Werner C. Rheinboldt,et al.  Methods for solving systems of nonlinear equations , 1987 .

[12]  G. M. Vainikko Galerkin's perturbation method and the general theory of approximate methods for non-linear equations☆ , 1967 .

[13]  Denis R. Bell The Malliavin Calculus , 1987 .

[14]  S. Peng,et al.  Adapted solution of a backward stochastic differential equation , 1990 .

[15]  Sônia M. Gomes,et al.  Convergence estimates for the wavelet Galerkin method , 1996 .

[16]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[17]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  D. Nualart The Malliavin Calculus and Related Topics , 1995 .

[19]  A. Üstünel An Introduction to Analysis on Wiener Space , 1995 .

[20]  Arturo Kohatsu-Higa,et al.  Weak Approximations. A Malliavin Calculus Approach , 1999, Math. Comput..

[21]  Marco Ferrante,et al.  Strong approximations for stochastic differential equations with boundary conditions , 1996 .

[22]  C. Chui Wavelets: A Tutorial in Theory and Applications , 1992 .

[23]  On the generalized sample solutions of stochastic boundary value problems , 1984 .

[24]  G. Maruyama Continuous Markov processes and stochastic equations , 1955 .

[25]  M. Zakai,et al.  Generalized stochastic integrals and the malliavin calculus , 1986 .

[26]  I. Karatzas,et al.  A generalized clark representation formula, with application to optimal portfolios , 1991 .

[27]  A. Haar Zur Theorie der orthogonalen Funktionensysteme , 1910 .

[28]  Efim A. Galperin,et al.  Spherical algorithms and evaluation of the fixed point set , 1994 .

[29]  J. Skilling,et al.  Algorithms and Applications , 1985 .

[30]  Markov Field Property of Stochastic Differential Equations , 1995 .

[31]  David Nualart,et al.  Boundary Value Problems for Stochastic Differential Equations , 1991 .

[32]  Efim A. Galperin,et al.  The cubic algorithm for optimization and control , 1990 .

[33]  M. Eisen,et al.  Probability and its applications , 1975 .

[34]  G. N. Mil’shtejn Approximate Integration of Stochastic Differential Equations , 1975 .