Electroactive polymers for sensing

Electromechanical coupling in electroactive polymers (EAPs) has been widely applied for actuation and is also being increasingly investigated for sensing chemical and mechanical stimuli. EAPs are a unique class of materials, with low-moduli high-strain capabilities and the ability to conform to surfaces of different shapes. These features make them attractive for applications such as wearable sensors and interfacing with soft tissues. Here, we review the major types of EAPs and their sensing mechanisms. These are divided into two classes depending on the main type of charge carrier: ionic EAPs (such as conducting polymers and ionic polymer–metal composites) and electronic EAPs (such as dielectric elastomers, liquid-crystal polymers and piezoelectric polymers). This review is intended to serve as an introduction to the mechanisms of these materials and as a first step in material selection for both researchers and designers of flexible/bendable devices, biocompatible sensors or even robotic tactile sensing units.

[1]  M. Atashbar,et al.  Carbon nanotube based biosensors , 2004, Proceedings of IEEE Sensors, 2004..

[2]  Kangsheng Chen,et al.  Demonstration of etched cladding fiber Bragg grating-based sensors with hydrogel coating , 2003 .

[3]  E. Smela Microfabrication of PPy microactuators and other conjugated polymer devices , 1999 .

[4]  Min-Hsien Wu,et al.  Development of a piezoelectric polyvinylidene fluoride polymer-based sensor patch for simultaneous heartbeat and respiration monitoring , 2013, The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems.

[5]  Keiichi Kaneto,et al.  Force detection with Donnan equilibrium in polypyrrole film , 2007 .

[6]  Minbaek Lee,et al.  Flexible Nanocomposite Generator Made of BaTiO3 Nanoparticles and Graphitic Carbons , 2012, Advanced materials.

[7]  H. Brand Electromechanical effects in cholesteric and chiral smectic liquid‐crystalline elastomers , 1989 .

[8]  Mohsen Shahinpoor,et al.  Ion-exchange-metal composite sensor films , 1997, Smart Structures.

[9]  Yucheng Ding,et al.  Self-powered flexible pressure sensors with vertically well-aligned piezoelectric nanowire arrays for monitoring vital signs , 2015 .

[10]  Andreas Richter,et al.  Application of sensitive hydrogels in flow control , 2000 .

[11]  Rachel Z. Pytel,et al.  Artificial muscle technology: physical principles and naval prospects , 2004, IEEE Journal of Oceanic Engineering.

[12]  Federico Carpi,et al.  Electromechanically Active Polymers , 2016 .

[13]  Ian W. Hunter,et al.  Encapsulated polypyrrole actuators , 1999 .

[14]  Cheng Huang,et al.  Nematic Anisotropic Liquid‐Crystal Gels—Self‐Assembled Nanocomposites with High Electromechanical Response , 2003 .

[15]  F. Carpi,et al.  Biomedical applications of electroactive polymer actuators , 2009 .

[16]  Kevin M. Farinholt,et al.  Modeling of electromechanical charge sensing in ionic polymer transducers , 2004 .

[17]  Wojtek Wlodarski,et al.  Polypyrrole nanofiber surface acoustic wave gas sensors , 2008 .

[18]  Luigi Fortuna,et al.  A bio-inspired device to detect equilibrium variations using IPMCs and ferrofluids , 2008 .

[19]  R. Baughman Conducting polymer artificial muscles , 1996 .

[20]  J. Madden,et al.  Polymer artificial muscles , 2007 .

[21]  Angus I. Kingon,et al.  Lead zirconate titanate thin films directly on copper electrodes for ferroelectric, dielectric and piezoelectric applications , 2005 .

[22]  Effect of cross-linker geometry on dynamic mechanical properties of nematic elastomers. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Vijay Narayan,et al.  A Scalable Nanogenerator Based on Self‐Poled Piezoelectric Polymer Nanowires with High Energy Conversion Efficiency , 2014, 1505.03694.

[24]  S. Graziani,et al.  A Tactile Sensor for Biomedical Applications Based on IPMCs , 2008, IEEE Sensors Journal.

[25]  Yang Li,et al.  Gas sensitivity of a composite of multi-walled carbon nanotubes and polypyrrole prepared by vapor phase polymerization , 2007 .

[26]  N. C. Goulbourne,et al.  A Study on the Effect of Flexible Electrodes and Passive Layers on the Performance of Dielectric Elastomer Membranes , 2006 .

[27]  J. Zicha,et al.  The role of sympathetic nervous system in the development of neurogenic pulmonary edema in spinal cord-injured rats. , 2012, Journal of applied physiology.

[28]  J. Riu,et al.  Electrochemical sensing based on carbon nanotubes , 2010 .

[29]  K. Kim,et al.  Ionic polymer-metal composites: I. Fundamentals , 2001 .

[30]  Todd A. Gisby,et al.  Self sensing feedback for dielectric elastomer actuators , 2013 .

[31]  G. Santiago,et al.  Modeling thin-film piezoelectric polymer ultrasonic sensors. , 2014, The Review of scientific instruments.

[32]  K. Kar,et al.  Ionic Polymer Metal Composites , 2017 .

[33]  Alvo Aabloo,et al.  Ionic polymer–metal composite mechanoelectrical transduction: review and perspectives , 2010 .

[34]  R. Butler,et al.  Measles and rubella elimination in the WHO Region for Europe: progress and challenges. , 2017, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[35]  Q. Pei,et al.  Advances in dielectric elastomers for actuators and artificial muscles. , 2010, Macromolecular rapid communications.

[36]  Luigi Fortuna,et al.  Characterization of IPMC strip sensorial properties: preliminary results , 2003, Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS '03..

[37]  S. Evoy,et al.  A review of piezoelectric polymers as functional materials for electromechanical transducers , 2014 .

[38]  Yun Wang,et al.  A Review of Carbon Nanotubes-Based Gas Sensors , 2009, J. Sensors.

[39]  Victor Giurgiutiu,et al.  Modeling and testing of PZT and PVDF piezoelectric wafer active sensors , 2006 .

[40]  Iain A. Anderson,et al.  Closed loop control of dielectric elastomer actuators , 2011, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[41]  Rein V. Ulijn,et al.  Biomedical applications of electroactive polymer actuators , 2009 .

[42]  Q. Pei,et al.  High-field deformation of elastomeric dielectrics for actuators , 2000 .

[43]  A. Nakao,et al.  Large enhancement in neurite outgrowth on a cell membrane-mimicking conducting polymer , 2014, Nature Communications.

[44]  O. Araromi,et al.  Thin-film dielectric elastomer sensors to measure the contraction force of smooth muscle cells , 2015, Smart Structures.

[45]  Lijun Dai,et al.  Electrode Preparation and Electro-deformation of Ionic Polymer-metal Composite (IPMC) , 2007, 2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems.

[46]  S. Kar‐Narayan,et al.  Polymer-based nanopiezoelectric generators for energy harvesting applications , 2014 .

[47]  Enzo Pasquale Scilingo,et al.  Strain-sensing fabrics for wearable kinaesthetic-like systems , 2003 .

[48]  K. Asaka,et al.  Self-Sensing Ionic Polymer Actuators: A Review , 2015 .

[49]  Zhang,et al.  Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer , 1998, Science.

[50]  P. Keller,et al.  Ferroelectric liquid crystals , 1975 .

[51]  Gi-Sig Byun,et al.  IPMC Based Biosensor for the Detection of Biceps Brachii Muscle Movements , 2013 .

[52]  S. Kar‐Narayan,et al.  Energy harvesting performance of piezoelectric ceramic and polymer nanowires , 2015, Nanotechnology.

[53]  Saibal Roy,et al.  Vibration based electromagnetic micropower generator on silicon , 2006 .

[54]  Norman M. Ratcliffe,et al.  Polypyrrole-based sensor for hydrazine and ammonia , 1990 .

[55]  Ferroelectric liquid‐crystalline elastomers , 1994 .

[56]  Elisabeth Smela,et al.  Color and Volume Change in PPy(DBS) , 2009 .

[57]  Choon Chiang Foo,et al.  Cyclic performance of viscoelastic dielectric elastomers with solid hydrogel electrodes , 2014 .

[58]  Bridget J. Munro,et al.  The intelligent knee sleeve: a wearable biofeedback device , 2008 .

[59]  Yeon Sik Choi,et al.  Control of Current Hysteresis of Networked Single‐Walled Carbon Nanotube Transistors by a Ferroelectric Polymer Gate Insulator , 2013 .

[60]  M. Remškar,et al.  Liquid crystal elastomer–nanoparticle systems for actuation , 2009 .

[61]  Ching-Liang Dai,et al.  Polypyrrole Porous Micro Humidity Sensor Integrated with a Ring Oscillator Circuit on Chip , 2010, Sensors.

[62]  Zhong Lin Wang,et al.  Highly Stretchable 2D Fabrics for Wearable Triboelectric Nanogenerator under Harsh Environments. , 2015, ACS nano.

[63]  Salvatore Graziani,et al.  Ionic electroactive polymer metal composites: Fabricating, modeling, and applications of postsilicon smart devices , 2013 .

[64]  Katsuko Kikuchi,et al.  The “Haptic Finger”– a new device for monitoring skin condition , 2003, Skin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging.

[65]  G. Wallace,et al.  Fast trilayer polypyrrole bending actuators for high speed applications , 2006 .

[66]  A. Schenning,et al.  Printable optical sensors based on H-bonded supramolecular cholesteric liquid crystal networks. , 2012, Journal of the American Chemical Society.

[67]  J. O. Simpson,et al.  Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles - a review , 1998 .

[68]  Mohsen Shahinpoor,et al.  Use of ionic polymer-metal composites (IPMCs) as a pressure transducer in the human spine , 1999, Smart Structures.

[69]  S. Cartmell,et al.  Conductive polymers: towards a smart biomaterial for tissue engineering. , 2014, Acta biomaterialia.

[70]  S. Nemat-Nasser Micromechanics of actuation of ionic polymer-metal composites , 2002 .

[71]  P. Palffy-Muhoray,et al.  Bent-Core Liquid Crystal Elastomers , 2010 .

[72]  A. Kheddar,et al.  Poly(3,4‐ethylenedioxythiophene)‐containing semi‐interpenetrating polymer networks: a versatile concept for the design of optical or mechanical electroactive devices , 2010 .

[73]  Xiaoqing Shi,et al.  Study on electromechanical characterization of piezoelectric polymer PVDF in low-frequency band , 2014, Journal of Materials Science: Materials in Electronics.

[74]  Santhosh Ragan,et al.  Soft-I-Robot , 2012 .

[75]  Xuanhe Zhao,et al.  Stretchable Hydrogel Electronics and Devices , 2016, Advanced materials.

[76]  W. Seitz,et al.  Chemical modulation of thermosensitive poly(N-isopropylacrylamide) microsphere swelling: a new strategy for chemical sensing , 2005 .

[77]  Marcus Rosenthal,et al.  Applications of dielectric elastomer EPAM sensors , 2007, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[78]  Andreas Richter,et al.  Electronically controllable microvalves based on smart hydrogels: magnitudes and potential applications , 2003 .

[79]  Jae-Joon Lee,et al.  Electrochemical Sensors Based on Carbon Nanotubes , 2009, Sensors.

[80]  E John,et al.  Dynamic Response of the , 1993 .

[81]  Separation of the Pyro- and Piezoelectric Response of Electroactive Polymers for Sensor Applications , 2006 .

[82]  F. Kremer,et al.  Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers , 2001, Nature.

[83]  Andres Punning,et al.  Long-term behavior of ionic electroactive polymer actuators in variable humidity conditions , 2015, Smart Structures.

[84]  Satu Kärki,et al.  Development of a piezoelectric polymer film sensor for plantar normal and shear stress measurements , 2009 .

[85]  Xianzhou Zhang,et al.  Development of electrorheological chip and conducting polymer-based sensor , 2009 .

[86]  María Teresa Cortés,et al.  Artificial Muscles with Tactile Sensitivity , 2003 .

[87]  G. Kovács,et al.  Design and characterization of an active hinge segment based on soft dielectric EAPs , 2008 .

[88]  John David Wyndham Madden,et al.  Conducting polymer actuators , 2000 .

[89]  Stewart Sherrit,et al.  Characterization of the electromechanical properties of ionomeric polymer-metal composite (IPMC) , 2002, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[90]  Guo-Hua Feng,et al.  Acoustic emission sensor with structure-enhanced sensing mechanism based on micro-embossed piezoelectric polymer , 2010 .

[91]  Gordon G. Wallace,et al.  Intelligent Chemical Systems Based on Conductive Electroactive Polymers , 1991 .

[92]  Luigi Fortuna,et al.  A resonant force sensor based on ionic polymer metal composites , 2008 .

[93]  서장후,et al.  Energy Harvesting , 2013 .

[94]  E. Biddiss,et al.  Electroactive polymeric sensors in hand prostheses: bending response of an ionic polymer metal composite. , 2006, Medical engineering & physics.

[95]  Stefan Seelecke,et al.  Self-sensing in dielectric electro-active polymer actuator using linear-in-parametes online estimation , 2015, 2015 IEEE International Conference on Mechatronics (ICM).

[96]  S. Nemat-Nasser,et al.  Effect of solvents on the chemical and physical properties of ionic polymer-metal composites , 2006 .

[97]  Kwang J. Kim,et al.  Physical Principles of Ionic Polymer–Metal Composites as Electroactive Actuators and Sensors , 2008 .

[98]  Tianmiao Wang,et al.  Electrode of ionic polymer-metal composite sensors: Modeling and experimental investigation , 2014 .

[99]  N. N. Losevsky,et al.  Liquid CrystaL , 2016 .

[100]  Ron Pelrine,et al.  Standards for dielectric elastomer transducers , 2015 .

[101]  Kin Fong Lei,et al.  The Structure Design of Piezoelectric Poly(vinylidene Fluoride) (PVDF) Polymer-Based Sensor Patch for the Respiration Monitoring under Dynamic Walking Conditions , 2015, Sensors.

[102]  Robert A Klocke,et al.  Dead space: simplicity to complexity. , 2006, Journal of applied physiology.

[103]  H. Finkelmann,et al.  Liquid Crystal Elastomers with Piezoelectric Properties , 1991 .

[104]  C. Plesse,et al.  Demonstrating kHz Frequency Actuation for Conducting Polymer Microactuators , 2014 .

[105]  K. Balasubramanian,et al.  Biosensors based on carbon nanotubes , 2006, Analytical and bioanalytical chemistry.

[106]  Giorgio Metta,et al.  Ultraflexible Tactile Piezoelectric Sensor Based on Low-Temperature Polycrystalline Silicon Thin-Film Transistor Technology , 2015, IEEE Sensors Journal.

[107]  G. Wallace,et al.  Response Characterization of Electroactive Polymers as Mechanical Sensors , 2008, IEEE/ASME Transactions on Mechatronics.

[108]  Hyouk Ryeol Choi,et al.  A dielectric elastomer actuator with self-sensing capability , 2008, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[109]  Ron Pelrine,et al.  High-Strain Actuator Materials Based on Dielectric Elastomers , 2000 .

[110]  Giovanni De Micheli,et al.  New Approaches for Carbon Nanotubes-Based Biosensors and Their Application to Cell Culture Monitoring , 2012, IEEE Transactions on Biomedical Circuits and Systems.

[111]  T. Chin,et al.  Preparation of gradually componential metal electrode on solution-casted Nafion membrane. , 2007, Biomolecular engineering.

[112]  Jean-Baptiste Sanchez,et al.  Ammonia gas sensor based on electrosynthesized polypyrrole films. , 2009, Talanta.

[113]  Hyouk Ryeol Choi,et al.  Self-sensing of dielectric elastomer actuator , 2008, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[114]  S. Green,et al.  Intensity-dependent effect of body tilt angle on calf muscle fatigue in humans , 2006, European Journal of Applied Physiology.

[115]  Long Lin,et al.  Replacing a Battery by a Nanogenerator with 20 V Output , 2012, Advanced materials.

[116]  A. Eisenberg,et al.  Introduction to Ionomers , 1998 .

[117]  Cédric Plesse,et al.  Robust solid polymer electrolyte for conducting IPN actuators , 2013 .

[118]  Zhong Lin Wang,et al.  Lead-free nanogenerator made from single ZnSnO3 microbelt. , 2012, ACS nano.

[119]  Rashid Bashir,et al.  BioMEMS: state-of-the-art in detection, opportunities and prospects. , 2004, Advanced drug delivery reviews.

[120]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[121]  Sia Nemat-Nassera,et al.  Micromechanics of actuation of ionic polymer-metal composites , 2014 .

[122]  M. Pepper,et al.  Design, development, and characteristics of an in-shoe triaxial pressure measurement transducer utilizing a single element of piezoelectric copolymer film , 2003, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[123]  Michael F. Ashby,et al.  Actuator Classification and Selection—The Development of a Database , 2002 .

[124]  A. Rinzler,et al.  Carbon nanotube actuators , 1999, Science.

[125]  Jeong Min Baik,et al.  Silk fibroin-based biodegradable piezoelectric composite nanogenerators using lead-free ferroelectric nanoparticles , 2015 .

[126]  Yin Wang,et al.  Dielectric elastomer cantilever beam sensor , 2014, Smart Structures.

[127]  Lori Shutter,et al.  Dual-mode operation of flexible piezoelectric polymer diaphragm for intracranial pressure measurement , 2010 .

[128]  Silvain Michel,et al.  Sensing frequency design for capacitance feedback of dielectric elastomers , 2015 .

[129]  Hari Singh Nalwa,et al.  Ferroelectric Polymers : Chemistry: Physics, and Applications , 1995 .

[130]  G. Spinks,et al.  Artificial Muscles Based on Polypyrrole/Carbon Nanotube Laminates , 2011, Advanced materials.

[131]  R. Gerhard-Multhaupt,et al.  Dielectric relaxation in piezo-, pyro- and ferroelectric polyamide 11 , 2004, IEEE Transactions on Dielectrics and Electrical Insulation.

[132]  B. J. Venton,et al.  Review: Carbon nanotube based electrochemical sensors for biomolecules. , 2010, Analytica chimica acta.

[133]  Y. Tanahashi,et al.  Development of an Active Palpation Sensor for Detecting Prostatic Cancer and Hypertrophy , 2000 .

[134]  Andreas Tairych,et al.  Where the rubber meets the hand: Unlocking the sensing potential of dielectric elastomers , 2016 .

[135]  Seyul Son,et al.  Dynamic response of tubular dielectric elastomer transducers , 2010 .

[136]  J. E. Marshall,et al.  Nanoparticle-Liquid Crystalline Elastomer Composites , 2012 .

[137]  Alessandro Chiolerio,et al.  Wearable Electronics and Smart Textiles: A Critical Review , 2014, Sensors.

[138]  İlker Murat Koç,et al.  Design of a piezoelectric based tactile sensor with bio-inspired micro/nano-pillars , 2013 .

[139]  Mohsen Shahinpoor,et al.  Blood pressure, pulse rate, and rhythm measurement using ionic polymer-metal composite sensors , 1999, Smart Structures.

[140]  H. Orihara,et al.  Measurement of electrically induced shear strain in a chiral smectic liquid-crystal elastomer. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[141]  Ron Pelrine,et al.  Multiple-degrees-of-freedom electroelastomer roll actuators , 2004 .

[142]  Andreas Tairych,et al.  Stretch not flex: programmable rubber keyboard , 2016 .

[143]  Andreas Richter,et al.  Temperature and ph-dependent swelling behavior of poly(N-isopropylacrylamide) copolymer hydrogels and their use in flow control , 2003 .

[144]  Mei Zhang,et al.  Carbon Nanotube Yarns as High Load Actuators and Sensors , 2008 .

[145]  Mengying Xie,et al.  Vapor phase polymerization of PEDOT on silicone rubber as flexible large strain sensor , 2015 .

[146]  Jianfeng Zang,et al.  Stretchable and High-Performance Supercapacitors with Crumpled Graphene Papers , 2014, Scientific Reports.

[147]  T. Livache,et al.  Biotin/avidin system for the generation of fully renewable DNA sensor based on biotinylated polypyrrole film , 2004 .

[148]  Ju-Hyuck Lee,et al.  Micropatterned P(VDF‐TrFE) Film‐Based Piezoelectric Nanogenerators for Highly Sensitive Self‐Powered Pressure Sensors , 2015 .

[149]  W. Yuan,et al.  Fault‐Tolerant Dielectric Elastomer Actuators using Single‐Walled Carbon Nanotube Electrodes , 2008 .

[150]  Richard Heydt,et al.  Electroactive polymers: an emerging technology for MEMS , 2004, SPIE MOEMS-MEMS.

[151]  Zhigang Suo,et al.  Maximal energy that can be converted by a dielectric elastomer generator , 2009 .

[152]  Amin Salehi-Khojin,et al.  On the sensing mechanism in carbon nanotube chemiresistors. , 2011, ACS nano.

[153]  Rashi Tiwari,et al.  The state of understanding of ionic polymer metal composite architecture: a review , 2011 .

[154]  ShahinpoorMohsen,et al.  A Review of Ionic Polymeric Soft Actuators and Sensors , 2014 .

[155]  César Benavente-Peces,et al.  Revisiting the Characterization of the Losses in Piezoelectric Materials from Impedance Spectroscopy at Resonance , 2016, Materials.

[156]  Q. Pei,et al.  High-speed electrically actuated elastomers with strain greater than 100% , 2000, Science.

[157]  Zulkifli Ahmad,et al.  Classification, processing and application of hydrogels: A review. , 2015, Materials science & engineering. C, Materials for biological applications.

[158]  Danilo De Rossi,et al.  Electroactive polymer-based devices for e-textiles in biomedicine , 2005, IEEE Transactions on Information Technology in Biomedicine.

[159]  Wen-Yang Chang,et al.  A Flexible Piezoelectric Sensor for Microfluidic Applications Using Polyvinylidene Fluoride , 2008, IEEE Sensors Journal.

[160]  D. K. Cullen,et al.  Developing a tissue-engineered neural-electrical relay using encapsulated neuronal constructs on conducting polymer fibers , 2008, Journal of neural engineering.

[161]  H. Choi,et al.  A self-sensing dielectric elastomer actuator , 2008 .

[162]  Sampo Tuukkanen,et al.  Structural and Electrical Characterization of Solution-Processed Electrodes for Piezoelectric Polymer Film Sensors , 2016, IEEE Sensors Journal.

[163]  M. Schulz,et al.  Flexible Dome and Bump Shape Piezoelectric Tactile Sensors Using PVDF-TrFE Copolymer , 2008, Journal of Microelectromechanical Systems.

[164]  Lijia Pan,et al.  3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices , 2013 .

[165]  Gursel Alici,et al.  Soft Mechanical Sensors Through Reverse Actuation in Polypyrrole , 2007 .

[166]  竹中 啓恭 Osaka National Research Institute , 1995 .

[167]  Robert B. Meyer,et al.  Piezoelectric Effects in Liquid Crystals , 1969 .

[168]  Keiichi Kaneto,et al.  Mechanochemoelectrical effect of polyaniline film , 1997 .

[169]  Stephen John,et al.  Sensor response of polypyrrole trilayer benders as a function of geometry , 2008, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[170]  Ji-Beom Yoo,et al.  Highly Stretchable Piezoelectric‐Pyroelectric Hybrid Nanogenerator , 2014, Advanced materials.

[171]  Farid Amirouche,et al.  Multiphysics modeling of an IPMC microfluidic control device , 2008 .

[172]  D. De Rossi,et al.  Folded dielectric elastomer actuators , 2007 .

[173]  F. Kremer,et al.  Electromechanical Properties of Smectic C* Liquid Crystal Elastomers under Shear , 2010 .

[174]  E. Dragan,et al.  Design and applications of interpenetrating polymer network hydrogels. A review , 2014 .

[175]  Toribio F. Otero,et al.  EAP as multifunctional and biomimetic materials , 1999, Smart Structures.

[176]  E. M. Terentjev,et al.  Liquid Crystal Elastomers , 2003 .

[177]  M. Yamaura,et al.  Enhancement of electrical conductivity of polypyrrole film by stretching: Counter ion effect , 1988 .

[178]  P. Sharma,et al.  A Theory of Flexoelectric Membranes and Effective Properties of Heterogeneous Membranes , 2014 .

[179]  Gursel Alici,et al.  Electromechanical coupling in polypyrrole sensors and actuators , 2010 .

[180]  Dhiman Bhattacharyya,et al.  Vapor phase oxidative synthesis of conjugated polymers and applications , 2012 .

[181]  F. Carpi,et al.  Ultrafast all-polymer electrically tuneable silicone lenses , 2016 .

[182]  H. Finkelmann,et al.  Nematic liquid single crystal elastomers , 1991 .

[183]  Cédric Plesse,et al.  Electro-active Interpenetrating Polymer Networks actuators and strain sensors: Fabrication, position control and sensing properties , 2014 .

[184]  Hyunjae Kang,et al.  Development of a piezoelectric polymer-based sensorized microgripper for microassembly and micromanipulation , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[185]  A. Grodzinsky,et al.  Electromechanical Transduction with Charged Polyelectrolyte Membranes , 1976, IEEE Transactions on Biomedical Engineering.

[186]  S. Basrour,et al.  Comparison of electroactive polymers for energy scavenging applications , 2010 .

[187]  Andrew A. Goldenberg,et al.  Control system design for a dielectric elastomer actuator: the sensory subsystem , 2002, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[188]  Danilo De Rossi,et al.  Electroactive polymer-based devices for e-textiles in biomedicine , 2005, IEEE Trans. Inf. Technol. Biomed..

[189]  Y. Tajitsu Sensing Complicated Motion of Human Body Using Piezoelectric Chiral Polymer Fiber , 2015 .

[190]  Mohsen Shahinpoor,et al.  Ionic polymer-metal composites as multifunctional materials , 2003 .

[191]  Nigel H. Lovell,et al.  A review of tactile sensing technologies with applications in biomedical engineering , 2012 .

[192]  Maurizio Valle,et al.  Electromechanical characterization of piezoelectric PVDF polymer films for tactile sensors in robotics applications , 2011 .

[193]  Garth L. Wilkes,et al.  Ionomers : synthesis, structure, properties and applications , 1997 .

[194]  Todd A. Gisby,et al.  Multi-functional dielectric elastomer artificial muscles for soft and smart machines , 2012 .

[195]  Y. Chéron,et al.  Design and Applications , 1992 .

[196]  N. S. Anas Carbon Nanotube as a basic material for Sensors: A review , 2011, International Conference on Nanoscience, Engineering and Technology (ICONSET 2011).

[197]  S. Smoukov,et al.  Electro-mechanical actuator with muscle memory , 2014 .

[198]  T. F. Otero,et al.  A sensing muscle , 2003 .

[199]  Zhigang Suo,et al.  Syringe-injectable electronics. , 2015, Nature nanotechnology.

[200]  Yoseph Bar-Cohen,et al.  Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges, Second Edition , 2004 .

[201]  Iain A. Anderson,et al.  Leakage current as a predictor of failure in dielectric elastomer actuators , 2010, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[202]  T. Livache,et al.  Reversible oligonucleotide immobilisation based on biotinylated polypyrrole film , 2001 .

[203]  Mohsen Shahinpoor,et al.  Dynamic curvature sensing employing ionic-polymer–metal composite sensors , 2011 .

[204]  Tianmiao Wang,et al.  Electrode of ionic polymer-metal composite sensors: modeling and experimental investigation , 2014, Smart Structures.

[205]  H. Shea,et al.  Flexible and stretchable electrodes for dielectric elastomer actuators , 2012, Applied Physics A.

[206]  Hirofumi Hashimoto,et al.  Gas sensitivities of electropolymerized polythiophene films , 1989 .

[207]  Sia Nemat-Nassera,et al.  Electromechanical response of ionic polymer-metal composites , 2000 .

[208]  Iain A. Anderson,et al.  Dielectric elastomer switches for smart artificial muscles , 2010 .

[209]  Xiaobo Tan,et al.  Underwater source localization using an IPMC-based artificial lateral line , 2011, 2011 IEEE International Conference on Robotics and Automation.

[210]  Ron Pelrine,et al.  Dielectric elastomers: generator mode fundamentals and applications , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[211]  J. Gleeson,et al.  Giant flexoelectricity in bent-core nematic liquid crystal elastomers , 2010 .

[212]  Xin Zhou,et al.  A Dielectric Polymer with High Electric Energy Density and Fast Discharge Speed , 2006, Science.

[213]  M. Bennett,et al.  Electromechanical Transduction in Ionic Liquid-Swollen Nafion Membranes , 2005 .

[214]  Iain A. Anderson,et al.  Integrated sensing and actuation of muscle-like actuators , 2009, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[215]  A. Punning,et al.  Surface resistance experiments with IPMC sensors and actuators , 2007 .

[216]  Qiming Zhang,et al.  Relaxor fluorinated polymers: novel applications and recent developments , 2008, IEEE Transactions on Dielectrics and Electrical Insulation.

[217]  G. Alici,et al.  Performance Quantification of Conducting Polymer Actuators for Real Applications: A Microgripping System , 2007, IEEE/ASME Transactions on Mechatronics.

[218]  Mohsen Shahinpoor,et al.  Potential applications of electroactive polymer sensors and actuators in MEMS technologies , 2001, SPIE Micro + Nano Materials, Devices, and Applications.

[219]  A. Ramanavičius,et al.  Electrochemical sensors based on conducting polymer—polypyrrole , 2006 .

[220]  Gordon G. Wallace,et al.  Towards fully optimized conducting polymer bending sensors: the effect of geometry , 2009 .

[221]  G. Wallace,et al.  Protein Detection Using Conducting Polymer Microarrays , 1998 .

[222]  Foued Ben Amara,et al.  Electroactive polymer actuators for active optical components , 2015 .

[223]  Ron Pelrine,et al.  Innovative power generators for energy harvesting using electroactive polymer artificial muscles , 2008, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[224]  J. Nichols,et al.  Tuning electronic structure via epitaxial strain in Sr2IrO4 thin films , 2013, 1302.0918.

[225]  Yoseph Bar-Cohen,et al.  EAP as artificial muscles: progress and challenges , 2004, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[226]  Relaxor fluorinated polymers: novel applications and recent developments , 2010 .

[227]  Sia Nemat-Nasser,et al.  Modeling of electrochemomechanical response of ionic polymer-metal composites with various solvents , 2006 .

[228]  Alexandre Khaldi,et al.  Smarter Actuator Design with Complementary and Synergetic Functions , 2015, Advanced materials.

[229]  Min-Hsien Wu,et al.  Development of a piezoelectric polyvinylidene fluoride (PVDF) polymer-based sensor patch for simultaneous heartbeat and respiration monitoring , 2013 .

[230]  Holger Böse,et al.  Novel dielectric elastomer sensors for compression load detection , 2014, Smart Structures.

[231]  J. Lekkala,et al.  A lumped-parameter transducer model for piezoelectric and ferroelectret polymers , 2012 .

[232]  K. Sadeghipour,et al.  Development of a novel electrochemically active membrane and 'smart' material based vibration sensor/damper , 1992 .

[233]  Sung-hoon Ahn,et al.  A review on IPMC material as actuators and sensors: Fabrications, characteristics and applications , 2012 .

[234]  Andreas Stemmer,et al.  Tunable transmission grating based on dielectric elastomer actuators , 2008, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[235]  K. Lee,et al.  Reliable operation of a nanogenerator under ultraviolet light via engineering piezoelectric potential , 2013 .

[236]  D. Rossi,et al.  Dielectric elastomers as electromechanical transducers: Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology , 2008 .

[237]  P. Collings,et al.  Introduction to Liquid Crystals: Chemistry and Physics , 1997 .

[238]  Giao T. M. Nguyen,et al.  Flexible Solid Polymer Electrolytes Based on Nitrile Butadiene Rubber/Poly(ethylene oxide) Interpenetrating Polymer Networks Containing Either LiTFSI or EMITFSI , 2011 .

[239]  Cédric Plesse,et al.  Actuation and Sensing properties of Electroactive Polymer Whiskers , 2011, FET.

[240]  Samuel Rosset,et al.  Self-sensing dielectric elastomer actuators in closed-loop operation , 2013 .

[241]  S. M. Marques,et al.  MC3T3-E1 Cell Response to Ti1-xAgx and Ag-TiNx Electrodes Deposited on Piezoelectric Poly(vinylidene fluoride) Substrates for Sensor Applications. , 2016, ACS applied materials & interfaces.