Resolving basal lamiid phylogeny and the circumscription of Icacinaceae with a plastome-scale data set.

PREMISE OF THE STUDY Major relationships within Lamiidae, an asterid clade with ∼40000 species, have largely eluded resolution despite two decades of intensive study. The phylogenetic positions of Icacinaceae and other early-diverging lamiid clades (Garryales, Metteniusaceae, and Oncothecaceae) have been particularly problematic, hindering classification and impeding our understanding of early lamiid (and euasterid) character evolution. METHODS To resolve basal lamiid phylogeny, we sequenced 50 plastid genomes using the Illumina sequencing platform and combined these with available asterid plastome sequence data for more comprehensive phylogenetic analyses. KEY RESULTS Our analyses resolved basal lamiid relationships with strong support, including the circumscription and phylogenetic position of the enigmatic Icacinaceae. This greatly improved basal lamiid phylogeny offers insight into character evolution and facilitates an updated classification for this clade, which we present here, including phylogenetic definitions for 10 new or converted clade names. We also offer recommendations for applying this classification to the Angiosperm Phylogeny Group (APG) system, including the recognition of a reduced Icacinaceae, an expanded Metteniusaceae, and two orders new to APG: Icacinales (Icacinaceae + Oncothecaceae) and Metteniusales (Metteniusaceae). CONCLUSIONS The lamiids possibly radiated from an ancestry of tropical trees with inconspicuous flowers and large, drupaceous fruits, given that these morphological characters are distributed across a grade of lineages (Icacinaceae, Oncothecaceae, Metteniusaceae) subtending the core lamiid clade (Boraginales, Gentianales, Lamiales, Solanales, Vahlia). Furthermore, the presence of similar morphological features among members of Aquifoliales suggests these characters might be ancestral for the Gentianidae (euasterids) as a whole.

[1]  Arthur Cronquist,et al.  Angiosperm Orders and Families. (Book Reviews: An Integrated System of Classification of Flowering Plants) , 1982 .

[2]  R. Thorne The classification and geography of the flowering plants: Dicotyledons of the class Angiospermae , 2000, The Botanical Review.

[3]  Matthew A. Gitzendanner,et al.  Resolving an ancient, rapid radiation in Saxifragales. , 2008, Systematic biology.

[4]  M. Chase,et al.  Phylogenetic relationships of Icacinaceae focusing on the vining genera , 2014 .

[5]  K. Cameron On the phylogenetic position of the New Caledonian endemic families Paracryphiaceae, Oncothecaceae, and Strasburgeriaceae: A comparison of molecules and morphology , 2002, The Botanical Review.

[6]  Towards a phylogenetic nomenclature of Tracheophyta , 2007 .

[7]  Lydia White,et al.  Sleumeria (Icacinaceae): A New Genus from Northern Borneo , 2005 .

[8]  D. Harris,et al.  How much data are needed to resolve a difficult phylogeny?: case study in Lamiales. , 2005, Systematic biology.

[9]  Masatoshi Nei,et al.  Overcredibility of molecular phylogenies obtained by Bayesian phylogenetics , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[10]  A. L. Takhtadzhi︠a︡n Diversity and classification of flowering plants , 1997 .

[11]  Douglas E. Soltis,et al.  Choosing an Approach and an Appropriate Gene for Phylogenetic Analysis , 1998 .

[12]  J. Palmer,et al.  A parsimony analysis of the Asteridae sensu lato based on rbcL sequences. , 1993 .

[13]  D. Soltis,et al.  The phylogeny of land plants inferred from 18S rDNA sequences: pushing the limits of rDNA signal? , 1999, Molecular biology and evolution.

[14]  Samuel S. Hunter,et al.  Assembly by Reduced Complexity (ARC): a hybrid approach for targeted assembly of homologous sequences , 2015, bioRxiv.

[15]  Dylan O. Burge Molecular Phylogenetics of Garrya (Garryaceae) , 2011 .

[16]  I. Nordal,et al.  Phylogenetic relationships in the genus Crinum (Amaryllidaceae) with emphasis on tropical African species : evidence from trnL-F and nuclear ITS DNA sequence data , 2007 .

[17]  C. Davis,et al.  Phylogenomics and a posteriori data partitioning resolve the Cretaceous angiosperm radiation Malpighiales , 2012, Proceedings of the National Academy of Sciences.

[18]  G. C. Fernández-Concha,et al.  Morphology-inferred Phylogeny and a Revision of the Genus Emmotum (Icacinaceae)1 , 2011 .

[19]  J. Carmichael,et al.  FINDING NATURAL CLUSTERS , 1968 .

[20]  W. Dickison Further observations on the floral anatomy and pollen morphology of Oncotheca (Oncothecaceae) , 1986 .

[21]  A. Rapini,et al.  Floral structure of Emmotum (Icacinaceae sensu stricto or Emmotaceae), a phylogenetically isolated genus of lamiids with a unique pseudotrimerous gynoecium, bitegmic ovules and monosporangiate thecae. , 2014, Annals of botany.

[22]  Saravanaraj N. Ayyampalayam,et al.  Phylotranscriptomic analysis of the origin and early diversification of land plants , 2014, Proceedings of the National Academy of Sciences.

[23]  P. Rudall,et al.  Flower and fruit characters in the early-divergent lamiid family Metteniusaceae, with particular reference to the evolution of pseudomonomery. , 2010, American journal of botany.

[24]  M. Chase,et al.  Metteniusaceae, an early-diverging family in the lamiid clade , 2007 .

[25]  James Leebens-Mack,et al.  Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns , 2007, Proceedings of the National Academy of Sciences.

[26]  David C. Tank,et al.  An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: , 2009 .

[27]  S. Jansen,et al.  The wood anatomy of the polyphyletic Icacinaceae s.l., and their relationships within asterids , 2008 .

[28]  D. Soltis,et al.  Phylogenetic Analysis of Asterids Based on Sequences of Four Genes , 2001 .

[29]  W. M. Whitten,et al.  Phylogeny of the eudicots : a nearly complete familial analysis based on rbcL gene sequences , 2000 .

[30]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[31]  P. Lockhart,et al.  Deciphering ancient rapid radiations. , 2007, Trends in ecology & evolution.

[32]  Maxim Teslenko,et al.  MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space , 2012, Systematic biology.

[33]  Gregory W. Stull,et al.  A targeted enrichment strategy for massively parallel sequencing of angiosperm plastid genomes , 2013, Applications in plant sciences.

[34]  Gregory W. Stull,et al.  Fruits of an “Old World” tribe (Phytocreneae; Icacinaceae) from the Paleogene of North and South America , 2012 .

[35]  Elizabeth A. Kellogg,et al.  An ordinal classification for the families of flowering plants , 1998 .

[36]  I. Bailey,et al.  The comparative morphology of the Icacinaceae. II. Vessels , 1941, Journal of the Arnold Arboretum.

[37]  J. G. Burleigh,et al.  Deep phylogenetic incongruence in the angiosperm clade Rosidae. , 2015, Molecular phylogenetics and evolution.

[38]  R. Olmstead,et al.  The phylogeny of the Asteridae sensu lato based on chloroplast ndhF gene sequences. , 2000, Molecular phylogenetics and evolution.

[39]  P. Stevens,et al.  Angiosperm Phylogeny Website. Version 13. , 2016 .

[40]  Liang Liu,et al.  Coalescent versus concatenation methods and the placement of Amborella as sister to water lilies. , 2014, Systematic biology.

[41]  Richard G. Olmstead,et al.  Combining Data in Phylogenetic Systematics: An Empirical Approach Using Three Molecular Data Sets in the Solanaceae , 1994 .

[42]  J. G. Burleigh,et al.  Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots , 2010, Proceedings of the National Academy of Sciences.

[43]  R. Olmstead,et al.  Patterns of Sequence Evolution and Implications for Parsimony Analysis of Chloroplast DNA , 1998 .

[44]  I. Bailey,et al.  The Comparative Morphology of the Icacinaceae: III. Imperforate Tracheary Elements and Xylem Parenchyma , 1941, Journal of the Arnold Arboretum.

[45]  D. E. Soltis,et al.  Angiosperm phylogeny: 17 genes, 640 taxa. , 2011, American journal of botany.

[46]  P. Morat,et al.  Existence d'une deuxième espèce appar tensan t au genre Oncotheca endémique de la Nouvelle-Calédonie et nouvelles données concernant les Oncothécacées \ , 1981 .

[47]  A. Takhtajan,et al.  Flowering plants; origin and dispersal , 1970 .

[48]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[49]  R. G. Olmstead,et al.  Phylogeny of Lamiidae. , 2014, American journal of botany.

[50]  W. Dickison,et al.  The Morphology and Relationships of Oncotheca Balansae , 1976, Botanical Gazette.

[51]  H. Sleumer Eine neue Art der Gattung Aveledoa Pittier , 1934 .

[52]  D. Soltis,et al.  Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology , 1999, Nature.

[53]  M. Källersjö,et al.  Phylogenetics of asterids based on 3 coding and 3 non-coding chloroplast DNA markers and the utility of non-coding DNA at higher taxonomic levels. , 2002, Molecular phylogenetics and evolution.

[54]  Pamela S Soltis,et al.  From algae to angiosperms–inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes , 2014, BMC Evolutionary Biology.

[55]  E. Pahlich,et al.  A rapid DNA isolation procedure for small quantities of fresh leaf tissue , 1980 .

[56]  Y. Qiu,et al.  Angiosperm phylogeny inferred from sequences of four mitochondrial genes , 2010 .

[57]  H. K. A. Shaw Diagnoses of new families, new names, etc., for the seventh edition of Willis's 'Dictionary' , 1965 .

[58]  T. Britton,et al.  Reliability of Bayesian posterior probabilities and bootstrap frequencies in phylogenetics. , 2003, Systematic biology.

[59]  Apgii An update of the angiosperm phylogeny group classification for the orders and families of flowering plants : APGII , 2003 .

[60]  Gregory W. Stull,et al.  Systematics of Mappia (Icacinaceae), an endemic genus of tropical America , 2013 .

[61]  Pamela S Soltis,et al.  Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms , 2007, Proceedings of the National Academy of Sciences.

[62]  James F. Smith Phylogenetics of seed plants : An analysis of nucleotide sequences from the plastid gene rbcL , 1993 .

[63]  W. Kress,et al.  Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences , 2000 .

[64]  D. Soltis,et al.  Phylogenetics of flowering plants based on combined analysis of plastid atpB and rbcL gene sequences. , 2000, Systematic biology.

[65]  M. Donoghue,et al.  Towards a phylogenetic nomenclature of Tracheophyta , 2007 .

[66]  P. Baas,et al.  EPIDERMAL LEAF CHARACTERS OF THE MALESIAN ICACINACEAE , 1973 .

[67]  R. Howard A revision of Casimirella, including Humirianthera (Icacinaceae) , 1992, Brittonia.

[68]  H. Sleumer Uber die Gattung Metteniusa Karsten (= Aveledoa Pittier) , 1936 .

[69]  Antonis Rokas,et al.  Comparing bootstrap and posterior probability values in the four-taxon case. , 2003, Systematic biology.

[70]  E. Birney,et al.  Velvet: algorithms for de novo short read assembly using de Bruijn graphs. , 2008, Genome research.

[71]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[72]  R. Howard Studies of the Icacinaceae, II. Humirianthera, Leretia, Mappia, and Nothapodytes, valid genera of the Icacineae , 1942 .

[73]  H. Sleumer Materials towards the knowledge of the Icacinaceae of Asia, Malesia, and adjacent areas , 1969 .

[74]  B. Bremer,et al.  Molecular phylogenetic dating of asterid flowering plants shows early Cretaceous diversification. , 2004, Systematic biology.

[75]  Emmotum harleyi, a New Species from Bahia, Brazil, and Lectotypification of Other Icacinaceae , 2007 .

[76]  J. Palmer,et al.  Monophyly of the Asteridae and Identification of Their Major Lineages Inferred From DNA Sequences of rbcL , 1992 .

[77]  D. Soltis,et al.  Rosid radiation and the rapid rise of angiosperm-dominated forests , 2009, Proceedings of the National Academy of Sciences.

[78]  I. Bailey,et al.  The comparative morphology of the Icacinaceae. I. Anatomy of the node and internode , 1941, Journal of the Arnold Arboretum.

[79]  Robert K. Jansen,et al.  Automatic annotation of organellar genomes with DOGMA , 2004, Bioinform..

[80]  Elizabeth A. Kellogg,et al.  Plant Systematics: A Phylogenetic Approach , 2000 .

[81]  J. Kårehed Multiple origin of the tropical forest tree family Icacinaceae. , 2001, American journal of botany.

[82]  C. Erbar,et al.  Distribution of the Character States “Early Sympetaly” and “Late Sympetaly” Within the “Sympetalae Tetracyclicae” and Presumably Allied Groups* , 1996 .

[83]  R. Olmstead,et al.  A survey of tricolpate (eudicot) phylogenetic relationships. , 2004, American journal of botany.