MMS observation of inverse energy dispersion in shock drift accelerated ions

The four Magnetospheric Multiscale (MMS) spacecraft observed a ∼1 min burst of energetic ions (50–1000 keV) in the region upstream from the subsolar quasi‐perpendicular bow shock on 6 December 2015. The composition, flux levels, and spectral indices of these energetic protons, helium, and oxygen ions greatly resemble those seen in the outer magnetosphere earlier while MMS crossed the magnetopause and differ significantly from those simultaneously observed far upstream by Advanced Composition Explorer (ACE). However, the event cannot be explained solely in terms of leakage from the magnetosphere. The strongly southward orientation of the interplanetary magnetic field (IMF) lines at the time of the event precludes any connection to the magnetosphere. This point is confirmed by the presence of energetic electrons, known to occur on magnetic field lines that graze the bow shock rather than connect to the magnetosphere. We suggest that the ions gradient drifted out of the nearby quasi‐parallel foreshock and into the quasi‐perpendicular bow shock. Each of the ion species exhibited an inverse energy dispersion. As predicted by models for shock drift acceleration, the energies of the ions increased as θBn, the angle between the IMF and the shock normal, increased. Finally, we note that a similar event was observed a few minutes later in the subsolar magnetosheath, indicating that such events can be swept downstream of the bow shock.

[1]  M. Lester,et al.  Inverse energy dispersion of energetic ions observed in the magnetosheath , 2016 .

[2]  D. Baker,et al.  Observations of energetic particle escape at the magnetopause: Early results from the MMS Energetic Ion Spectrometer (EIS) , 2016 .

[3]  U. Gliese,et al.  Fast Plasma Investigation for Magnetospheric Multiscale , 2016 .

[4]  Thomas E. Moore,et al.  Magnetospheric Multiscale Overview and Science Objectives , 2016 .

[5]  Wolfgang Baumjohann,et al.  The Magnetospheric Multiscale Magnetometers , 2016 .

[6]  M. R. Stokes,et al.  The Energetic Particle Detector (EPD) Investigation and the Energetic Ion Spectrometer (EIS) for the Magnetospheric Multiscale (MMS) Mission , 2016 .

[7]  Wolfgang Baumjohann,et al.  The FIELDS Instrument Suite on MMS: Scientific Objectives, Measurements, and Data Products , 2016 .

[8]  E. Möbius,et al.  The free escape continuum of diffuse ions upstream of the Earth's quasi‐parallel bow shock , 2013 .

[9]  A. Spitkovsky,et al.  ION ACCELERATION IN NON-RELATIVISTIC ASTROPHYSICAL SHOCKS , 2011, 1107.0762.

[10]  R. Yamazaki,et al.  RELATIVISTIC ELECTRON SHOCK DRIFT ACCELERATION IN LOW MACH NUMBER GALAXY CLUSTER SHOCKS , 2011, 1109.0070.

[11]  B. Klecker,et al.  Multipoint observations of ions in the 30–160 keV energy range upstream of the Earth's bow shock , 2009 .

[12]  I. Dandouras,et al.  On the edge of the foreshock: model-data comparisons , 2008 .

[13]  J. Slavin,et al.  Three‐dimensional position and shape of the bow shock and their variation with upstream Mach numbers and interplanetary magnetic field orientation , 2005 .

[14]  E. Möbius,et al.  Multi‐spacecraft observations of diffuse ions upstream of Earth's bow shock , 2004 .

[15]  M. Pastoriza,et al.  Sample of minor merger of galaxies : optical CCD surface photometry and HII region properties , 2004, astro-ph/0409150.

[16]  J. Giacalone Large-Scale Hybrid Simulations of Particle Acceleration at a Parallel Shock , 2004 .

[17]  P. Louarn,et al.  Observation of energy-time dispersed ion structures in the magnetosheath by CLUSTER: possible signatures of transient acceleration processes at shock , 2003 .

[18]  N. Hasebe,et al.  Ring current oxygen ions escaping into the magnetosheath , 2001 .

[19]  A. Szabo,et al.  Solar wind preconditioning in the flank foreshock: IMP 8 observations , 2001 .

[20]  N. Paschalidis,et al.  Energy time dispersion of a new class of magnetospheric ion events observed near the Earth’s bow shock , 2000 .

[21]  Louis J. Lanzerotti,et al.  Electron, Proton, and Alpha Monitor on the Advanced Composition Explorer spacecraft , 1998 .

[22]  S. M. Krimigis,et al.  The Ultra-Low-Energy Isotope Spectrometer (ULEIS) for the ACE spacecraft , 1998 .

[23]  S. Krimigis,et al.  Characteristics of upstream energetic (E≥50 keV) ion events during intense geomagnetic activity , 1998 .

[24]  G. Le,et al.  ULF waves in the foreshock , 1995 .

[25]  M. Hilchenbach,et al.  Statistical analysis of diffuse ion events upstream of the Earth's bow shock , 1994 .

[26]  S. Kahler Injection profiles of solar energetic particles as functions of coronal mass ejection heights , 1994 .

[27]  J. Meyer,et al.  Energetic-particle abundances in impulsive solar flare events , 1994 .

[28]  R. Decker Shock Drift Acceleration , 1992 .

[29]  H. Kucharek,et al.  Ion injection and Fermi acceleration at Earth's bow shock : the 1984 September 12 event revisited , 1992 .

[30]  Wolfgang Baumjohann,et al.  Upstream pressure variations associated with the bow shock and their effects on the magnetosphere , 1990 .

[31]  Wolfgang Baumjohann,et al.  The Magnetospheric Response to 8-Minute Period Strong-Amplitude Upstream Pressure Variations , 1989 .

[32]  D. Baker,et al.  The magnetosphere as a sufficient source for upstream ions on November 1, 1984 , 1988 .

[33]  R. Decker,et al.  Computer modeling of test particle acceleration at oblique shocks , 1988 .

[34]  S. Krimigis,et al.  Simultaneous measurements of energetic ion (≥50 keV) and electron (≥220 keV) activity upstream of Earth's bow shock and inside the plasma sheet: Magnetospheric source for the November 3 and December 3, 1977 upstream events , 1987 .

[35]  S. Krimigis,et al.  Energetic magnetospheric ions at the dayside magnetopause: Leakage or merging? , 1987 .

[36]  D. Ellison,et al.  Diffusive shock acceleration - comparison of a unified shock model to bow shock observations , 1987 .

[37]  D. Burgess Shock drift acceleration at low energies , 1987 .

[38]  David G. Sibeck,et al.  Magnetospheric particle injection and the upstream ion event of September 5, 1984 , 1986 .

[39]  S. Krimigis,et al.  Magnetospheric origin of energetic (E ≥ 50 keV) ions upstream of the bow shock: The October 31, 1977, event , 1986 .

[40]  Reuven Ramaty,et al.  Shock acceleration of electrons and ions in solar flares , 1985 .

[41]  D. Ellison Shock acceleration of diffuse ions at the Earth's bow shock: Acceleration efficiency and A/Z enhancement , 1985 .

[42]  C. Russell,et al.  Patterns of potential magnetic field merging sites on the dayside magnetopause , 1984 .

[43]  R. Decker Formation of shock‐spike events at quasi‐perpendicular shocks , 1983 .

[44]  E. Sarris,et al.  Dominant acceleration processes of ambient energetic protons (E ⩾ 50 keV) at the Bow Shock: Conditions and limitations , 1983 .

[45]  Martin A. Lee Coupled hydromagnetic wave excitation and ion acceleration upstream of the earth's bow shock , 1982 .

[46]  E. Stone,et al.  Energetic electrons in the magnetosheath and upstream of the bow shock , 1982 .

[47]  G. Gloeckler,et al.  Temporal development of composition, spectra, and anisotropies during upstream particle events , 1981 .

[48]  N. Sckopke,et al.  Characteristics of reflected and diffuse ions upstream from the earth's bow shock , 1981 .

[49]  A. Galvin,et al.  A Statistical survey of Ions Observed Upstream of the Earth's Bow Shock' , 1981 .

[50]  D. Eichler Energetic particle spectra in finite shocks: the earth's bow shock , 1981 .

[51]  G. Gloeckler,et al.  Conditions for acceleration of energetic ions ≳30 keV associated with the Earth's bow shock , 1980 .

[52]  I. Papamastorakis,et al.  Plasma acceleration at the Earth's magnetopause: evidence for reconnection , 1979, Nature.

[53]  G. Parks,et al.  Thin sheets of energetic electrons upstream from the earth's bow shock , 1979 .

[54]  T. Terasawa Origin of 30 ∼ 100 kev protons observed in the upstream region of the Earth's bow shock , 1979 .

[55]  N. Sckopke,et al.  Observations of two distinct populations of bow shock ions in the upstream solar wind , 1978 .

[56]  S. Krimigis,et al.  Simultaneous measurements of energetic protons and electrons in the distant magnetosheath, magnetotail, and upstream in the solar wind , 1978 .

[57]  T. Armstrong,et al.  Location of the source of magnetospheric energetic particle bursts by multispacecraft observations , 1976 .

[58]  C. Meng,et al.  30- to 100-keV protons upstream from the earth's bow shock , 1974 .

[59]  J. Asbridge,et al.  Outward flow of protons from the Earth's bow shock , 1968 .