Improved nanocrystal formation, quantum confinement and carrier transport properties of doped Si quantum dot superlattices for third generation photovoltaics

An all-Si tandem solar cell has the potential to achieve high conversion efficiency at low cost. However, the selection and synthesis of candidate material remain challenging. In this work, we show that the conventional ‘Si quantum dots (Si QDs) in SiO2 matrix’ approach can lead to the formation of over-sized Si nanocrystals especially when doped with phosphorous, making the size-dependent quantum confinement less effective. Also, our investigation has shown that the high resistivity of this material has become the performance bottleneck of the solar cell. To resolve these matters, we propose a new design based on Si QDs embedded in a SiO2/Si3N4 hybrid matrix. By replacing the SiO2 tunnel barriers by the Si3N4 layers, the new material manages to constrain the growth of doped Si QDs effectively and enhances the apparent band gap, as shown in X-ray diffraction, Raman, photoluminescence and optical spectroscopic measurements. Besides, electrical characterisation on Si QD/c-Si heterointerface test structures indicates the new material possesses improved vertical carrier transport properties. Copyright © 2011 John Wiley & Sons, Ltd.

[1]  Xb Liao,et al.  Absorption spectra of nanocrystalline silicon embedded in SiO2 matrix , 1999 .

[2]  F. Riley Silicon Nitride and Related Materials , 2004 .

[3]  M. Green,et al.  Synthesis and characterization of boron-doped Si quantum dots for all-Si quantum dot tandem solar cells , 2009 .

[4]  M. Green,et al.  Fabrication and electrical characteristics of Si nanocrystal/c-Si heterojunctions , 2007 .

[5]  L. D. Negro,et al.  Optical gain in silicon nanocrystals , 2000, Nature.

[6]  Patricia M. Nieva,et al.  Thermal expansion coefficient of polycrystalline silicon and silicon dioxide thin films at high temperatures , 2000 .

[7]  G. A. Slack,et al.  Thermal Grüneisen parameters of CdAl2O4, β–Si3N4, and other phenacite‐type compounds , 1982 .

[8]  J. Heitmann,et al.  Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach , 2002 .

[9]  P. Schmid,et al.  Optical absorption in heavily doped silicon , 1981 .

[10]  T. F. Retajczyk,et al.  Elastic stiffness and thermal expansion coefficients of various refractory silicides and silicon nitride films , 1980 .

[11]  C. Tsamis,et al.  Diffusivity measurements of silicon in silicon dioxide layers using isotopically pure material , 2001 .

[12]  R. Walters,et al.  Field-effect electroluminescence in silicon nanocrystals , 2005, Nature materials.

[13]  W. Warta,et al.  Solar cell efficiency tables (version 36) , 2010 .

[14]  Gavin Conibeer,et al.  Silicon quantum dot nanostructures for tandem photovoltaic cells , 2008 .

[15]  G Van Tendeloo,et al.  Classification and control of the origin of photoluminescence from Si nanocrystals. , 2008, Nature nanotechnology.

[16]  Costas P. Grigoropoulos,et al.  Thermal conductivity and diffusivity of free‐standing silicon nitride thin films , 1995 .

[17]  Gavin Conibeer,et al.  Si nanocrystal p-i-n diodes fabricated on quartz substrates for third generation solar cell applications , 2009 .

[18]  T. Inokuma,et al.  Structure and grain boundary defects of recrystallized silicon films prepared from amorphus silicon deposited using disilane , 1995 .

[19]  Gavin Conibeer,et al.  Impacts of Post-metallisation Processes on the Electrical and Photovoltaic Properties of Si Quantum Dot Solar Cells , 2010, Nanoscale research letters.

[20]  Formation and photoluminescence of Si quantum dots in SiO2/Si3N4 hybrid matrix for all-Si tandem solar cells , 2010 .

[21]  Yoshihiro Hishikawa,et al.  Interference-Free Determination of the Optical Absorption Coefficient and the Optical Gap of Amorphous Silicon Thin Films , 1991 .

[22]  Paul S. Ho,et al.  Measurement of elastic modulus, Poisson ratio, and coefficient of thermal expansion of on-wafer submicron films , 1999 .