Evaluation of microstructure, magnetic properties and catalytic application of Co2+ and Cr3+ doped Ni- Zn spinel ferrite

Abstract Cobalt and chromium doped ferro spinels synthesized by sol-gel auto-combustion method with glycine as a fuel, calcination temperature of samples confirmed from TGA/DSC analysis. The observed elemental analysis from EDAX is in good agreement with the theoretical composition of elements. The XRD and Rietveld analysis of XRD patterns illustrate formation of single- phase cubic spinel structure. The IR spectra shows two principle absorption bands. SEM and TEM images reveal well-defined nanoparticles with slight agglomeration. Calculated and observed magneton number decreased with Co2+ and Cr3+ substitution. 1, 8‐dioxodecahydroacridines synthesized using synthesized ferrite nanoparticles as a catalyst.

[1]  K. Lohar,et al.  Synthesis, microstructure and magnetic properties of Co2+ and Al3+ substituted La-Zn nano ferrites , 2021, Ferroelectrics (Print).

[2]  Qiang Chen,et al.  Electrochemical sensor based on magnetic nanohybrids of multiple phthalocyanine doped ferrites/CMWCNTs for detection of rosmarinic acid. , 2021, Talanta.

[3]  K. Lohar,et al.  Synthesis and characterization of Al3+ substituted Ni–Cu–Zn nano ferrites , 2021, Journal of Thermal Analysis and Calorimetry.

[4]  Bikram Singh,et al.  Structural and magnetic investigation of Al3+ and Cr3+substituted Ni–Co–Cu nanoferrites for potential applications , 2020, Solid State Sciences.

[5]  A. Meidanchi,et al.  Preparation, characterization and in vitro evaluation of magnesium ferrite superparamagnetic nanoparticles as a novel radiosensitizer of breast cancer cells , 2020 .

[6]  C. Srinivas,et al.  Study of magnetic behavior in co-precipitated Ni–Zn ferrite nanoparticles and their potential use for gas sensor applications , 2020 .

[7]  D. Kulkarni,et al.  An efficient one pot multicomponent synthesis of pyrano pyrazoles using Cu2+ doped Ni-Zn nano ferrite catalyst , 2020 .

[8]  A. Verma,et al.  Evaluation of structural and dielectric properties of Mn2+-substituted Zn-spinel ferrite nanoparticles for gas sensor applications , 2020 .

[9]  S. J. Pawar,et al.  Structural, magnetic, and antimicrobial properties of zinc doped magnesium ferrite for drug delivery applications , 2020 .

[10]  K. SijoA.,et al.  Structural properties of magnesium-substituted lithium ferrites , 2020, Applied Nanoscience.

[11]  A. Thakur,et al.  Development of tungsten doped Ni-Zn nano-ferrites with fast response and recovery time for hydrogen gas sensing application , 2019 .

[12]  K. Lohar,et al.  AN EFFICIENT ONE-POT SYNTHESIS OF BENZIMIDAZOLES USING MAGNETICALLY RECOVERABLE CATALYST CHROMIUM DOPED NICKEL COPPER ZINC SPINEL FERRITE , 2019, International Research Journal Of Pharmacy.

[13]  F. Pineider,et al.  Nickel ferrite nanoparticles for simultaneous use in magnetic resonance imaging and magnetic fluid hyperthermia. , 2019, Journal of colloid and interface science.

[14]  W. I. Liu,et al.  Impact of oscillating magnetic field on the thermal-conductivity of water-Fe3O4 and water-Fe3O4/CNT ferro-fluids: Experimental study , 2019, Journal of Magnetism and Magnetic Materials.

[15]  M. Tahir,et al.  Design, synthesis and computational analysis of novel acridine-(sulfadiazine/sulfathiazole) hybrids as antibacterial agents , 2019, Journal of Molecular Structure.

[16]  M. Qomi,et al.  Aspartic-acid-loaded starch-functionalized Mn–Fe–Ca ferrite magnetic nanoparticles as novel green heterogeneous nanomagnetic catalyst for solvent-free synthesis of dihydropyrimidine derivatives as potent antibacterial agents , 2019, Research on Chemical Intermediates.

[17]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[18]  K. Lohar,et al.  Preparation and Characterization of Chromium Doped Ni-Cu-Zn Nano Ferrites. , 2017, Acta chimica Slovenica.

[19]  M. Kazemi,et al.  Cobalt ferrite nanoparticles (CoFe2O4 MNPs) as catalyst and support: magnetically recoverable nanocatalysts in organic synthesis , 2017 .

[20]  Wei Lv,et al.  Gas sensors based on ytterbium ferrites nanocrystalline powders for detecting acetone with low concentrations , 2017 .

[21]  P. Sharma,et al.  Ferrimagnetic Ni 2+ doped Mg-Zn spinel ferrite nanoparticles for high density information storage , 2017 .

[22]  A. Sulong,et al.  Structural, spectral, dielectric and magnetic properties of Ni0.5MgxZn0.5-xFe2O4 nanosized ferrites for microwave absorption and high frequency applications , 2017 .

[23]  C. Stergiou Magnetic, dielectric and microwave absorption properties of rare earth doped Ni-Co and Ni-Co-Zn spinel ferrites , 2017 .

[24]  G. Cholewiński,et al.  Recent developments in the synthesis and biological activity of acridine/acridone analogues , 2017 .

[25]  E. Jafari,et al.  Effects of sintering atmosphere and temperature on structural and magnetic properties of Ni-Cu-Zn ferrite nano-particles: Magnetic enhancement by a reducing atmosphere , 2017 .

[26]  D. Ravinder,et al.  Investigation of superparamagnetism in pure and chromium substituted cobalt nanoferrite , 2016 .

[27]  V. Vader Ni and Co substituted zinc ferri-chromite: A study of their influence in photocatalytic performance , 2016 .

[28]  B. Song,et al.  Effect of pH value on electromagnetic loss properties of Co–Zn ferrite prepared via coprecipitation method , 2016 .

[29]  Osama M Mustafa Magnetic , 2016, Medical Humanities.

[30]  J. Havlica,et al.  Impact of Nd3+ in CoFe2O4 spinel ferrite nanoparticles on cation distribution, structural and magnetic properties , 2016 .

[31]  M. Sivakumar,et al.  Experimental studies from FT-IR with TG-DTA analysis of ferrites , 2016 .

[32]  Tanja Neumann,et al.  Elements Of X Ray Diffraction , 2016 .

[33]  M. Morales,et al.  Hydrothermal synthesis of fine stabilized superparamagnetic nanoparticles of Zn2+ substituted manganese ferrite , 2015 .

[34]  M. H. Khan,et al.  Investigation of structural and temperature dependent electromagnetic properties of Co0.5Zn0.5CrxFe2−xO4 , 2015 .

[35]  Le-Zhong Li,et al.  Structural and magnetic properties of Cr-substituted NiZnCo ferrite nanopowders , 2015 .

[36]  H. Rezvani,et al.  Nickel ferrite nanoparticles: an efficient and reusable nanocatalyst for a neat, one-pot and four-component synthesis of pyrroles , 2015 .

[37]  I. Dumitru,et al.  Magnetic and dielectric properties of Co–Zn ferrite , 2013 .

[38]  E. Rafiee,et al.  Magnetically recoverable, nanoscale-supported heteropoly acid catalyst for green synthesis of biologically active compounds in water , 2013 .

[39]  K. M. Jadhav,et al.  Preparation and characterization of Co2+ substituted Li–Dy ferrite ceramics , 2013 .

[40]  F. Al-Agel,et al.  Synthesis, characterization and magnetic properties of Cr-substituted Co-Zn ferrites nanopowders , 2013 .

[41]  S. Pawar,et al.  Combustion synthesis of cobalt ferrite nanoparticles—Influence of fuel to oxidizer ratio , 2012 .

[42]  S. Patil,et al.  Sol–gel synthesis of Cr3+ substituted Li0.5Fe2.5O4: Cation distribution, structural and magnetic properties , 2011 .

[43]  K. Niknam,et al.  Silica-bonded N-Propyl Sulfamic Acid: A Recyclable Catalyst for the Synthesis of 1,8-Dioxo-decahydroacridines, 1,8-Dioxo-octahydroxanthenes and Quinoxalines , 2010 .

[44]  Yuan Gao,et al.  Microwave—prompted Reaction of Cinnamonitrile Derivatives with 5,5—Dimethyl—1,3—cyclohexanedione , 2010 .

[45]  M. Srivastava,et al.  Investigation on size dependent structural and magnetic behavior of nickel ferrite nanoparticles prepared by sol–gel and hydrothermal methods , 2009 .

[46]  H. Bijanzadeh,et al.  ONE-POT SYNTHESIS OF 1,8-DIOXO-DECAHYDROACRIDINE DERIVATIVES IN AQUEOUS MEDIA , 2009 .

[47]  H. Tian,et al.  BRONSTED ACIDIC IMIDAZOLIUM SALTS CONTAINING PERFLUOROALKYL TAILS CATALYZED ONE-POT SYNTHESIS OF 1,8-DIOXO-DECAHYDROACRIDINES IN WATER , 2009 .

[48]  K. M. Jadhav,et al.  Cation distribution by Rietveld, spectral and magnetic studies of chromium-substituted nickel ferrites , 2009 .

[49]  J. Baird,et al.  Antitumour and antimalarial activity of artemisinin-acridine hybrids. , 2009, Bioorganic & medicinal chemistry letters.

[50]  Jianji Wang,et al.  An efficient and green preparation of 9‐arylacridine‐1,8‐dione derivatives , 2007 .

[51]  J. Jang,et al.  Nitrogen-doped magnetic carbon nanoparticles as catalyst supports for efficient recovery and recycling. , 2007, Chemical communications.

[52]  S. Fossey,et al.  Synthesis and Modeling of Acridine Dyes as Potential Photosensitizers for Dye‐Sensitized Photovoltaic Applications , 2006 .

[53]  Mark Voorneveld,et al.  Preparation , 2018, Games Econ. Behav..

[54]  L. Meijer,et al.  Antiinflammatory, analgesic and kinase inhibition activities of some acridine derivatives , 2004 .

[55]  M. Han,et al.  Quantum Couplings and Magnetic Properties of CoCrxFe2-xO4 (0 < x < 1) Spinel Ferrite Nanoparticles Synthesized with Reverse Micelle Method , 2004 .

[56]  L. Berthon,et al.  Preparation, structural analysis and anticonvulsant activity of 3- and 5-aminopyrazole N-benzoyl derivatives , 1995 .

[57]  S. Fischer,et al.  Investigation of the formation of nickel-zinc ferrite from coprecipitated oxalates , 1991 .

[58]  T. Gupta,et al.  Sintering of ZnO: I, Densification and Grain Growth , 1968 .

[59]  R. Waldron Infrared Spectra of Ferrites , 1955 .

[60]  L. Weil,et al.  Propriétés magnétiques et structure de la phase quadratique du ferrite de cuivre , 1950 .