Oxygen Evolution Reaction Catalyzed by Cost-Effective Metal Oxides

[1]  F. Calle‐Vallejo,et al.  A New Type of Scaling Relations to Assess the Accuracy of Computational Predictions of Catalytic Activities Applied to the Oxygen Evolution Reaction , 2017 .

[2]  Colin F. Dickens,et al.  Combining theory and experiment in electrocatalysis: Insights into materials design , 2017, Science.

[3]  Joseph H. Montoya,et al.  A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction , 2016, Science.

[4]  J. Gascón,et al.  Iridium-based double perovskites for efficient water oxidation in acid media , 2016, Nature Communications.

[5]  Simon Geiger,et al.  Oxygen evolution activity and stability of iridium in acidic media. Part 2. – Electrochemically grown hydrous iridium oxide , 2016 .

[6]  K. Mayrhofer,et al.  Oxygen evolution activity and stability of iridium in acidic media. Part 1. – Metallic iridium , 2016 .

[7]  Benjamin Paul,et al.  Oxygen Evolution Reaction Dynamics, Faradaic Charge Efficiency, and the Active Metal Redox States of Ni-Fe Oxide Water Splitting Electrocatalysts. , 2016, Journal of the American Chemical Society.

[8]  P. Strasser,et al.  Dynamical changes of a Ni-Fe oxide water splitting catalyst investigated at different pH , 2016 .

[9]  M. Koper,et al.  The importance of nickel oxyhydroxide deprotonation on its activity towards electrochemical water oxidation† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5sc04486c , 2016, Chemical science.

[10]  Marc T. M. Koper,et al.  In Situ Observation of Active Oxygen Species in Fe-Containing Ni-Based Oxygen Evolution Catalysts: The Effect of pH on Electrochemical Activity. , 2015, Journal of the American Chemical Society.

[11]  Marc T. M. Koper,et al.  Guidelines for the Rational Design of Ni-Based Double Hydroxide Electrocatalysts for the Oxygen Evolution Reaction , 2015 .

[12]  F. Calle‐Vallejo,et al.  Introducing structural sensitivity into adsorption-energy scaling relations by means of coordination numbers. , 2015, Nature chemistry.

[13]  Jens K Nørskov,et al.  Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting. , 2015, Journal of the American Chemical Society.

[14]  F. Calle‐Vallejo,et al.  Why Is Bulk Thermochemistry a Good Descriptor for the Electrocatalytic Activity of Transition Metal Oxides , 2015 .

[15]  I. Chorkendorff,et al.  Benchmarking the Stability of Oxygen Evolution Reaction Catalysts: The Importance of Monitoring Mass Losses , 2014 .

[16]  Aleksandar R. Zeradjanin,et al.  Stability of nanostructured iridium oxide electrocatalysts during oxygen evolution reaction in acidic environment , 2014 .

[17]  Aleksandar R. Zeradjanin,et al.  Dissolution of Noble Metals during Oxygen Evolution in Acidic Media , 2014 .

[18]  Thomas Bligaard,et al.  Assessing the reliability of calculated catalytic ammonia synthesis rates , 2014, Science.

[19]  N. Danilovic,et al.  Activity-Stability Trends for the Oxygen Evolution Reaction on Monometallic Oxides in Acidic Environments. , 2014, The journal of physical chemistry letters.

[20]  Qiu Yang,et al.  Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. , 2014, Chemical communications.

[21]  S. Boettcher,et al.  Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. , 2014, Journal of the American Chemical Society.

[22]  Charles C. L. McCrory,et al.  Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. , 2013, Journal of the American Chemical Society.

[23]  Tom Regier,et al.  An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. , 2013, Journal of the American Chemical Society.

[24]  F. Calle‐Vallejo,et al.  Electrochemical water splitting by gold: evidence for an oxide decomposition mechanism , 2013 .

[25]  John R. Kitchin,et al.  Number of outer electrons as descriptor for adsorption processes on transition metals and their oxides , 2013 .

[26]  F. Calle‐Vallejo,et al.  First-principles computational electrochemistry: Achievements and challenges , 2012 .

[27]  A. Bondarenko,et al.  Influence of Cs+ and Na+ on Specific Adsorption of *OH, *O, and *H at Platinum in Acidic Sulfuric Media , 2012 .

[28]  J. Rossmeisl,et al.  Physical and chemical nature of the scaling relations between adsorption energies of atoms on metal surfaces. , 2012, Physical review letters.

[29]  Marc T. M. Koper,et al.  Thermodynamic theory of multi-electron transfer reactions: Implications for electrocatalysis , 2011 .

[30]  John Kitchin,et al.  Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces , 2011 .

[31]  J. Rossmeisl,et al.  Trends in stability of perovskite oxides. , 2010, Angewandte Chemie.

[32]  J. Nørskov,et al.  Electrolysis of water on oxide surfaces , 2007 .

[33]  Ture R. Munter,et al.  Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. , 2007, Physical review letters.

[34]  Hao Wu,et al.  Solar energy conversion. , 2007 .

[35]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[36]  D. Corrigan,et al.  Effect of Coprecipitated Metal Ions on the Electrochemistry of Nickel Hydroxide Thin Films: Cyclic Voltammetry in 1M KOH , 1989 .

[37]  C. Angelinetta,et al.  Heterogenous acid-base equilibria and reaction order of oxygen evolution on oxide electrodes , 1986 .

[38]  E. Sato,et al.  Electrocatalytic properties of transition metal oxides for oxygen evolution reaction , 1986 .

[39]  S. Trasatti Electrocatalysis in the anodic evolution of oxygen and chlorine , 1984 .

[40]  J. Bockris,et al.  The Electrocatalysis of Oxygen Evolution on Perovskites , 1984 .

[41]  J. Bockris,et al.  Solid state surface studies of the electrocatalysis of oxygen evolution on perovskites , 1983 .

[42]  J. Bockris,et al.  Mechanism of oxygen evolution on perovskites , 1983 .

[43]  R. Kötz,et al.  XPS Studies of Oxygen Evolution on Ru and RuO2 Anodes , 1983 .

[44]  S. Trasatti Electrocatalysis by oxides — Attempt at a unifying approach , 1980 .

[45]  A. Damjanović,et al.  Electrode Kinetics of Oxygen Evolution and Dissolution on Rh, Ir, and Pt‐Rh Alloy Electrodes , 1966 .

[46]  J. Bockris Kinetics of Activation Controlled Consecutive Electrochemical Reactions: Anodic Evolution of Oxygen , 1956 .

[47]  P. Breeze The Hydrogen Economy , 2017 .