The ITensor Software Library for Tensor Network Calculations

ITensor is a system for programming tensor network calculations with an interface modeled on tensor diagram notation, which allows users to focus on the connectivity of a tensor network without manually bookkeeping tensor indices. The ITensor interface rules out common programming errors and enables rapid prototyping of tensor network algorithms. After discussing the philosophy behind the ITensor approach, we show examples of each part of the interface including Index objects, the ITensor product operator, tensor factorizations, tensor storage types, algorithms for matrix product state (MPS) and matrix product operator (MPO) tensor networks, quantum number conserving block-sparse tensors, and the NDTensors library. We also review publications that have used ITensor for quantum many-body physics and for other areas where tensor networks are increasingly applied. To conclude we discuss promising features and optimizations to be added in the future.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[3]  T. Nishino,et al.  Corner Transfer Matrix Renormalization Group Method , 1995, cond-mat/9507087.

[4]  Östlund,et al.  Thermodynamic limit of density matrix renormalization. , 1995, Physical review letters.

[5]  Tomotoshi Nishino,et al.  Corner Transfer Matrix Algorithm for Classical Renormalization Group , 1997 .

[6]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[7]  장윤희,et al.  Y. , 2003, Industrial and Labor Relations Terms.

[8]  G. Vidal Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.

[9]  A. ADoefaa,et al.  ? ? ? ? f ? ? ? ? ? , 2003 .

[10]  F. Verstraete,et al.  Matrix product density operators: simulation of finite-temperature and dissipative systems. , 2004, Physical review letters.

[11]  Frank Verstraete,et al.  Matrix product state representations , 2006, Quantum Inf. Comput..

[12]  I. McCulloch From density-matrix renormalization group to matrix product states , 2007, cond-mat/0701428.

[13]  Michael Levin,et al.  Tensor renormalization group approach to two-dimensional classical lattice models. , 2006, Physical review letters.

[14]  Xiao-Gang Wen,et al.  Tensor-entanglement renormalization group approach as a unified method for symmetry breaking and topological phase transitions , 2008 .

[15]  W. Hackbusch,et al.  A New Scheme for the Tensor Representation , 2009 .

[16]  Steven R White,et al.  Minimally entangled typical quantum States at finite temperature. , 2009, Physical review letters.

[17]  E. Tyrtyshnikov,et al.  TT-cross approximation for multidimensional arrays , 2010 .

[18]  Guifre Vidal,et al.  Tensor network decompositions in the presence of a global symmetry , 2009, 0907.2994.

[19]  Steven R. White,et al.  Minimally entangled typical thermal state algorithms , 2010, 1002.1305.

[20]  Ivan Oseledets,et al.  Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..

[21]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[22]  Steven R. White,et al.  Studying Two Dimensional Systems With the Density Matrix Renormalization Group , 2011, 1105.1374.

[23]  B. Swingle,et al.  Entanglement Renormalization and Holography , 2009, 0905.1317.

[24]  Guifre Vidal,et al.  Tensor network states and algorithms in the presence of a global SU(2) symmetry , 2010, 1208.3919.

[25]  Roman Orus,et al.  A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States , 2013, 1306.2164.

[26]  Glen Evenbly,et al.  Improving the efficiency of variational tensor network algorithms , 2014 .

[27]  Frank Verstraete,et al.  Faster identification of optimal contraction sequences for tensor networks. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  R. Pfeifer,et al.  NCON: A tensor network contractor for MATLAB , 2014, 1402.0939.

[29]  Roger G. Melko,et al.  Corner contribution to the entanglement entropy of an O(3) quantum critical point in 2 + 1 dimensions , 2014, 1401.3504.

[30]  Stefan Wessel,et al.  Corner contribution to the entanglement entropy of strongly interacting O(2) quantum critical systems in 2+1 dimensions , 2014, 1409.6327.

[31]  M. Schreiber,et al.  Observation of many-body localization of interacting fermions in a quasirandom optical lattice , 2015, Science.

[32]  Anna Keselman,et al.  Gapless symmetry-protected topological phase of fermions in one dimension , 2015, 1502.02037.

[33]  William Witczak-Krempa,et al.  Universality of Corner Entanglement in Conformal Field Theories. , 2015, Physical review letters.

[34]  J. Preskill,et al.  Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence , 2015, 1503.06237.

[35]  Alexander Novikov,et al.  Tensorizing Neural Networks , 2015, NIPS.

[36]  Matthew T. Fishman,et al.  Compression of correlation matrices and an efficient method for forming matrix product states of fermionic Gaussian states , 2015, 1504.07701.

[37]  Andrzej Cichocki,et al.  Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 1 Low-Rank Tensor Decompositions , 2016, Found. Trends Mach. Learn..

[38]  Garnet Kin-Lic Chan,et al.  Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms. , 2016, The Journal of chemical physics.

[39]  Jeongwan Haah,et al.  Quantum Entanglement Growth Under Random Unitary Dynamics , 2016, 1608.06950.

[40]  Markus Aichhorn,et al.  Fork Tensor Product States - Efficient Three Orbital Real Time DMFT Solver , 2016, 1612.05587.

[41]  David J. Schwab,et al.  Supervised Learning with Tensor Networks , 2016, NIPS.

[42]  Frank Verstraete,et al.  Gradient methods for variational optimization of projected entangled-pair states , 2016, 1606.09170.

[43]  Philippe Corboz,et al.  Variational optimization with infinite projected entangled-pair states , 2016, 1605.03006.

[44]  Frank Pollmann,et al.  Density matrix renormalization group on a cylinder in mixed real and momentum space , 2015, 1512.03318.

[45]  David M. Ceperley,et al.  Towards the solution of the many-electron problem in real materials: equation of state of the hydrogen chain with state-of-the-art many-body methods , 2017, 1705.01608.

[46]  Benedikt Bruognolo,et al.  Matrix product state techniques for two-dimensional systems at finite temperature , 2017, 1705.05578.

[47]  P. Calabrese,et al.  Entanglement and thermodynamics after a quantum quench in integrable systems , 2016, Proceedings of the National Academy of Sciences.

[48]  Steven R White,et al.  Sliced Basis Density Matrix Renormalization Group for Electronic Structure. , 2017, Physical review letters.

[49]  Michael Innes,et al.  Don't Unroll Adjoint: Differentiating SSA-Form Programs , 2018, ArXiv.

[50]  E. Miles Stoudenmire,et al.  Learning relevant features of data with multi-scale tensor networks , 2017, ArXiv.

[51]  Gil Refael,et al.  Quantum dynamics of thermalizing systems , 2017, 1707.01506.

[52]  Alexander McCaskey,et al.  Validating quantum-classical programming models with tensor network simulations , 2018, PloS one.

[53]  Johnnie Gray,et al.  quimb: A python package for quantum information and many-body calculations , 2018, J. Open Source Softw..

[54]  F. Verstraete,et al.  Variational optimization algorithms for uniform matrix product states , 2017, 1701.07035.

[55]  Devin A. Matthews,et al.  High-Performance Tensor Contraction without Transposition , 2016, SIAM J. Sci. Comput..

[56]  Paolo Bientinesi,et al.  Design of a High-Performance GEMM-like Tensor–Tensor Multiplication , 2016, ACM Trans. Math. Softw..

[57]  F. Verstraete,et al.  Faster methods for contracting infinite two-dimensional tensor networks , 2017, Physical Review B.

[58]  Frank Pollmann,et al.  Efficient numerical simulations with Tensor Networks: Tensor Network Python (TeNPy) , 2018, SciPost Physics Lecture Notes.

[59]  Thomas Kohler,et al.  Time-evolution methods for matrix-product states , 2019, Annals of Physics.

[60]  Frank Verstraete,et al.  Tangent-space methods for uniform matrix product states , 2018, SciPost Physics Lecture Notes.

[61]  Adam Zalcman,et al.  TensorNetwork: A Library for Physics and Machine Learning , 2019, ArXiv.

[62]  Jordan Venderley,et al.  Density matrix renormalization group study of superconductivity in the triangular lattice Hubbard model , 2019, Physical Review B.

[63]  F. Verstraete,et al.  Symmetric cluster expansions with tensor networks , 2019, 1912.10512.

[64]  Jung Hoon Han,et al.  Competing spin liquid phases in the S = 12 Heisenberg model on the Kagome lattice , 2019 .

[65]  Katharine Hyatt,et al.  DMRG Approach to Optimizing Two-Dimensional Tensor Networks , 2019, 1908.08833.

[66]  E. Miles Stoudenmire,et al.  Multisliced gausslet basis sets for electronic structure , 2019, Physical Review B.

[67]  Lei Wang,et al.  Differentiable Programming Tensor Networks , 2019, Physical Review X.

[68]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[69]  J. Haegeman,et al.  Riemannian optimization of isometric tensor networks , 2020, SciPost Physics.

[70]  J. Chen,et al.  Hybrid purification and sampling approach for thermal quantum systems , 2019, Physical Review B.

[71]  X. Waintal,et al.  What Limits the Simulation of Quantum Computers? , 2020, Physical Review X.

[72]  Ce Zhu,et al.  Low-rank Tensor Grid for Image Completion. , 2019, 1903.04735.

[73]  M. Zaletel,et al.  Local matrix product operators: Canonical form, compression, and control theory , 2019, 1909.06341.

[74]  Justin Reyes,et al.  A Multi-Scale Tensor Network Architecture for Classification and Regression , 2020, ArXiv.

[75]  P. Zhang,et al.  Contracting Arbitrary Tensor Networks: General Approximate Algorithm and Applications in Graphical Models and Quantum Circuit Simulations. , 2019, Physical review letters.

[76]  AutoHOOT: Automatic High-Order Optimization for Tensors , 2020, PACT.

[77]  Tai-Danae Bradley,et al.  Modeling sequences with quantum states: a look under the hood , 2019, Mach. Learn. Sci. Technol..

[78]  Sergey Dolgov,et al.  Parallel cross interpolation for high-precision calculation of high-dimensional integrals , 2019, Comput. Phys. Commun..

[79]  Guillaume Rabusseau,et al.  Tensorized Random Projections , 2020, AISTATS.

[80]  Tangent-space methods for truncating uniform MPS , 2020, 2001.11882.

[81]  Efficient matrix product state methods for extracting spectral information on rings and cylinders , 2021, Physical Review B.

[82]  Ilia A Luchnikov,et al.  Riemannian geometry and automatic differentiation for optimization problems of quantum physics and quantum technologies , 2020, New Journal of Physics.

[83]  N. Schuch,et al.  Generating function for tensor network diagrammatic summation , 2021, Physical Review B.

[84]  G. Chan,et al.  Low communication high performance ab initio density matrix renormalization group algorithms. , 2021, The Journal of chemical physics.

[85]  Jin-Guo Liu,et al.  Tropical Tensor Network for Ground States of Spin Glasses. , 2020, Physical review letters.

[86]  Christopher T. Chubb General tensor network decoding of 2D Pauli codes , 2021, 2101.04125.

[87]  S. Danisch,et al.  Makie.jl: Flexible high-performance data visualization for Julia , 2021, J. Open Source Softw..

[88]  S. Kourtis,et al.  Hyper-optimized tensor network contraction , 2020, Quantum.

[89]  P. Alam ‘G’ , 2021, Composites Engineering: An A–Z Guide.

[90]  E. Miles Stoudenmire,et al.  Multi-scale tensor network architecture for machine learning , 2021, Mach. Learn. Sci. Technol..

[91]  P. Alam ‘L’ , 2021, Composites Engineering: An A–Z Guide.

[92]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[93]  P. Alam ‘N’ , 2021, Composites Engineering: An A–Z Guide.

[94]  P. Alam ‘E’ , 2021, Composites Engineering: An A–Z Guide.

[95]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.

[96]  Thien Nguyen,et al.  Enabling Pulse-Level Programming, Compilation, and Execution in XACC , 2020, IEEE Transactions on Computers.

[97]  P. Corboz,et al.  Automatic differentiation applied to excitations with projected entangled pair states , 2021, SciPost Physics.

[98]  Chenhua Geng,et al.  Differentiable programming of isometric tensor networks , 2021, Mach. Learn. Sci. Technol..

[99]  Frank Pollmann,et al.  Dissipation-assisted operator evolution method for capturing hydrodynamic transport , 2020, Physical Review B.