A new class of nonlinear filters

To attenuate random noise is important in recovering signals with change points for signal processing. We give a new class of nonlinear filters. We give left prediction and right prediction, left smoothing and right smoothing. We estimate the current signal value using the smoothing values and predictive values (NCNF). In simulated experiments, it is shown that the presented method is effective.

[1]  Yrjö Neuvo,et al.  A New Class of Detail-Preserving Filters for Image Processing , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Yrjö Neuvo,et al.  FIR-median hybrid filters , 1987, IEEE Trans. Acoust. Speech Signal Process..

[3]  C. E. Schmidt,et al.  Applications of nonlinear smoothing to speech processing , 1975 .

[4]  A. Venetsanopoulos,et al.  Order statistics in digital image processing , 1992, Proc. IEEE.

[5]  Lawrence R. Rabiner,et al.  Applications of a nonlinear smoothing algorithm to speech processing , 1975 .

[6]  Yrjö Neuvo,et al.  FIR-median hybrid filters with predictive FIR substructures , 1988, IEEE Trans. Acoust. Speech Signal Process..

[7]  G. Wise,et al.  A theoretical analysis of the properties of median filters , 1981 .

[8]  Niklaus Wirth,et al.  Algorithms + Data Structures = Programs , 1976 .

[9]  Franco P. Preparata,et al.  A Minimum Area VLSI Network for O(log n) Time Sorting , 1985, IEEE Transactions on Computers.