Morphology‐Dependent Trap Formation in High Performance Polymer Bulk Heterojunction Solar Cells

Bulk heterojunction solar cells (BHJs) based on poly[N‐9″‐hepta‐decanyl‐2,7‐carbazole‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole)] (PCDTBT) can have internal quantum efficiencies approaching 100% but require active layers that are too thin to absorb more than ∼70% of the above band gap light. When the active layer thickness is increased so that the cell absorbs more light, the fill factor and open circuit voltage decrease rapidly, so that the overall power conversion efficiency decreases. We find that hole‐traps in the polymer, which we characterize using space‐charge limited current measurements, play an important role in the performance of PCDTBT‐based BHJs and may limit the active layer thickness. Recombination due to carrier trapping is not often considered in BHJs because it is not believed to be a dominant loss mechanism in the “fruit‐fly” P3HT system. Furthermore, we show that in contrast to P3HT, PCDTBT has only weak short‐range molecular order, and that annealing at temperatures above the glass transition decreases the order in the π–π stacking. The decrease in structural order is matched by the movement of hole‐traps deeper into the band gap, so that thermal annealing worsens hole transport in the polymer and reduces the efficiency of PCDTBT‐based BHJs. These findings suggest that P3HT is not prototypical of the new class of high efficiency polymers, and that further improvement of BHJ efficiencies will necessitate the study of high efficiency polymers with low structural order.

[1]  C. Tanford Macromolecules , 1994, Nature.

[2]  R. H. Good,et al.  Thermionic Emission, Field Emission, and the Transition Region , 1956 .

[3]  Peter Mark,et al.  Space‐Charge‐Limited Currents in Organic Crystals , 1962 .

[4]  M. Lampert,et al.  Current injection in solids , 1970 .

[5]  H. Bässler,et al.  Localized states and electronic transport in single component organic solids with diagonal disorder , 1981 .

[6]  Monroe,et al.  Hopping exponential band tails. , 1985, Physical review letters.

[7]  H. Bässler Charge Transport in Disordered Organic Photoconductors a Monte Carlo Simulation Study , 1993 .

[8]  J. J. M. Vleggaar,et al.  Electron and hole transport in poly(p‐phenylene vinylene) devices , 1996 .

[9]  Donal D. C. Bradley,et al.  Space-charge limited conduction with traps in poly(phenylene vinylene) light emitting diodes , 1997 .

[10]  Paul Ernest Parris,et al.  Essential Role of Correlations in Governing Charge Transport in Disordered Organic Materials , 1998 .

[11]  E. W. Meijer,et al.  Two-dimensional charge transport in self-organized, high-mobility conjugated polymers , 1999, Nature.

[12]  J. Kǒcka,et al.  Extraction current transients: new method of study of charge transport in microcrystalline silicon , 2000, Physical review letters.

[13]  David Beljonne,et al.  Interchain Interactions in Organic π‐Conjugated Materials: Impact on Electronic Structure, Optical Response, and Charge Transport , 2001 .

[14]  Valentin D. Mihailetchi,et al.  Hole Transport in Poly(phenylene vinylene)/Methanofullerene Bulk‐Heterojunction Solar Cells , 2004 .

[15]  V. Dyakonov,et al.  Trap-limited hole mobility in semiconducting poly(3-hexylthiophene) , 2004 .

[16]  Xiaoniu Yang,et al.  Morphology and Thermal Stability of the Active Layer in Poly(p-phenylenevinylene)/Methanofullerene Plastic Photovoltaic Devices , 2004 .

[17]  Valentin D. Mihailetchi,et al.  Device model for the operation of polymer/fullerene bulk heterojunction solar cells , 2005 .

[18]  Donal D. C. Bradley,et al.  Ambipolar Charge Transport in Films of Methanofullerene and Poly(phenylenevinylene)/Methanofullerene Blends , 2005 .

[19]  Xiaoniu Yang,et al.  Nanoscale morphology of high-performance polymer solar cells. , 2005, Nano letters.

[20]  P. Blom,et al.  Unified description of charge-carrier mobilities in disordered semiconducting polymers. , 2005, Physical review letters.

[21]  Electron-only diodes of poly(dialkoxy-p-phenylene vinylene) using hole-blocking bottom electrodes , 2006 .

[22]  Donal D. C. Bradley,et al.  A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells , 2006 .

[23]  Maxim Shkunov,et al.  Liquid-crystalline semiconducting polymers with high charge-carrier mobility , 2006, Nature materials.

[24]  Valentin D. Mihailetchi,et al.  Charge Transport and Photocurrent Generation in Poly(3‐hexylthiophene): Methanofullerene Bulk‐Heterojunction Solar Cells , 2006 .

[25]  P. Blom,et al.  Charge transport in MDMO-PPV:PCNEPV all-polymer solar cells , 2007 .

[26]  P. Blom,et al.  Trap-limited electron transport in disordered semiconducting polymers , 2007 .

[27]  A J Heeger,et al.  Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. , 2007, Nature materials.

[28]  Mario Leclerc,et al.  A Low‐Bandgap Poly(2,7‐Carbazole) Derivative for Use in High‐Performance Solar Cells , 2007 .

[29]  R. J. Kline,et al.  X-ray scattering study of thin films of poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene). , 2007, Journal of the American Chemical Society.

[30]  Dong Hoon Lee,et al.  Origin of high mobility within an amorphous polymeric semiconductor : Space-charge-limited current and trap distribution , 2008 .

[31]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[32]  Yang Yang,et al.  Polymer solar cells with enhanced open-circuit voltage and efficiency , 2009 .

[33]  Christoph J. Brabec,et al.  Bimolecular Crystals of Fullerenes in Conjugated Polymers and the Implications of Molecular Mixing for Solar Cells , 2009 .

[34]  E. Hoke,et al.  Incomplete exciton harvesting from fullerenes in bulk heterojunction solar cells. , 2009, Nano letters.

[35]  M. Toney,et al.  Tuning the properties of polymer bulk heterojunction solar cells by adjusting fullerene size to control intercalation. , 2009, Nano letters.

[36]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[37]  R. Coehoorn,et al.  Electron transport in polyfluorene-based sandwich-type devices: Quantitative analysis of the effects of disorder and electron traps , 2009 .

[38]  C. McNeill,et al.  Photocurrent transients in all-polymer solar cells: Trapping and detrapping effects , 2009 .

[39]  C. Deibel,et al.  Origin of reduced polaron recombination in organic semiconductor devices , 2009, 0907.2428.

[40]  Nelson E. Coates,et al.  Charge carrier photogeneration and decay dynamics in the poly(2,7-carbazole) copolymer PCDTBT and in bulk heterojunction composites with PC 70 BM , 2010 .

[41]  Robert A. Street,et al.  Interface state recombination in organic solar cells , 2010 .

[42]  Gang Li,et al.  For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4% , 2010, Advanced materials.

[43]  C. Deibel,et al.  Charge carrier extraction by linearly increasing voltage: Analytic framework and ambipolar transients , 2010, 1006.4394.

[44]  C. Deibel,et al.  Comment on “Interface state recombination in organic solar cells” , 2010, 1006.4813.

[45]  Zhenan Bao,et al.  Effects of Thermal Annealing Upon the Morphology of Polymer–Fullerene Blends , 2010 .

[46]  R. Street Reply to Comment on 'Interface state recombination in organic solar cells' , 2010 .

[47]  Shinuk Cho,et al.  A Thermally Stable Semiconducting Polymer , 2010, Advanced materials.

[48]  R. Coehoorn,et al.  Electron transport in the organic small-molecule material BAlq — the role of correlated disorder and traps , 2010 .

[49]  R. Gysel,et al.  Effects of Intercalation on the Hole Mobility of Amorphous Semiconducting Polymer Blends , 2010 .

[50]  Shijun Jia,et al.  Polymer–Fullerene Bulk‐Heterojunction Solar Cells , 2009, Advanced materials.

[51]  P. Blom,et al.  Trap-free electron transport in poly(p-phenylene vinylene) by deactivation of traps with n-type doping , 2010 .

[52]  Pierre M Beaujuge,et al.  Synthetic control of structural order in N-alkylthieno[3,4-c]pyrrole-4,6-dione-based polymers for efficient solar cells. , 2010, Journal of the American Chemical Society.

[53]  Xiong Gong,et al.  Efficient, Air‐Stable Bulk Heterojunction Polymer Solar Cells Using MoOx as the Anode Interfacial Layer , 2011, Advanced materials.

[54]  Wei You,et al.  Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells. , 2011, Journal of the American Chemical Society.

[55]  R. J. Kline,et al.  Structural Origin of Gap States in Semicrystalline Polymers and the Implications for Charge Transport , 2010, 1012.2240.

[56]  Zhenan Bao,et al.  The Phase Behavior of a Polymer-Fullerene Bulk Heterojunction System that Contains Bimolecular Crystals , 2011 .

[57]  Ye Tao,et al.  Bulk heterojunction solar cells using thieno[3,4-c]pyrrole-4,6-dione and dithieno[3,2-b:2',3'-d]silole copolymer with a power conversion efficiency of 7.3%. , 2011, Journal of the American Chemical Society.

[58]  Zhe Li,et al.  Transient photocurrent measurements of PCDTBT:PC70BM and PCPDTBT:PC70BM Solar Cells: Evidence for charge trapping in efficient polymer/fullerene blends , 2011 .

[59]  Ian A. Howard,et al.  Polythiophene:Perylene Diimide Solar Cells – the Impact of Alkyl‐Substitution on the Photovoltaic Performance , 2011 .