Higher Order Finite Element Methods

The efficiency of numerical methods for wave propagation analysis is essential, as very fine spatial and temporal resolutions are required in order to properly describe all the phenomena of interest, such as scattering, reflection, mode conversion, and many more. These strict demands originate from the fact that high-frequency ultrasonic guided waves are investigated. In the current chapter, we focus on the finite element method (FEM) based on higher order basis functions and demonstrate its range of applicability. Thereby, we discuss the p-FEM, the spectral element method (SEM), and the isogeometric analysis (IGA). Additionally, convergence studies demonstrate the performance of the different higher order approaches with respect to wave propagation problems. The results illustrate that higher order methods are an effective numerical tool to decrease the numerical costs and to increase the accuracy. Furthermore, we can conclude that FE-based methods are principally able to tackle all wave propagation-related problems, but they are not necessarily the most efficient choice in all situations.

[1]  Christian Willberg,et al.  Experimental and Theoretical Analysis of Lamb Wave Generation by Piezoceramic Actuators for Structural Health Monitoring , 2012 .

[2]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[3]  Alessandro Reali,et al.  Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems , 2014 .

[4]  Mark Ainsworth,et al.  Dispersive and Dissipative Behavior of the Spectral Element Method , 2009, SIAM J. Numer. Anal..

[5]  Géza Seriani,et al.  3-D large-scale wave propagation modeling by spectral element method on Cray T3E multiprocessor , 1998 .

[6]  I. Babuska,et al.  Finite Element Analysis , 2021 .

[7]  A. Patera A spectral element method for fluid dynamics: Laminar flow in a channel expansion , 1984 .

[8]  Alexander Düster,et al.  Reducing spurious oscillations in discontinuous wave propagation simulation using high-order finite elements , 2015, Comput. Math. Appl..

[9]  A. F. Emery,et al.  The solution of elastostatic and elastodynamic problems with Chebyshev spectral finite elements , 2000 .

[10]  Wieslaw Ostachowicz,et al.  3D time-domain spectral elements for stress waves modelling , 2009 .

[11]  Mark Ainsworth,et al.  Optimally Blended Spectral-Finite Element Scheme for Wave Propagation and NonStandard Reduced Integration , 2010, SIAM J. Numer. Anal..

[12]  Alexander Düster,et al.  Finite and spectral cell method for wave propagation in heterogeneous materials , 2014, Computational Mechanics.

[13]  D. Komatitsch,et al.  Introduction to the spectral element method for three-dimensional seismic wave propagation , 1999 .

[14]  Ivan Bartoli,et al.  Modeling guided wave propagation with application to the long-range defect detection in railroad tracks , 2005 .

[15]  Vivar Perez,et al.  Analytical and Spectral Methods for the Simulation of Elastic Waves in Thin Plates , 2012 .

[16]  Ulrich Gabbert,et al.  Wave Propagation Analysis using High-Order Finite Element Methods: Spurious Oscillations excited by Internal Element Eigenfrequencies , 2014 .

[17]  Marek Krawczuk,et al.  Modelling of wave propagation in composite plates using the time domain spectral element method , 2007 .

[18]  Rolf T. Schulte Modellierung und Simulation von wellenbasierten Structural-Health-Monitoring-Systemen mit der Spektral-Elemente-Methode , 2011 .

[19]  D. Komatitsch,et al.  Spectral-element simulations of global seismic wave propagation—I. Validation , 2002 .

[20]  Chien-Ching Ma,et al.  Theoretical analysis and experimental measurement for resonant vibration of piezoceramic circular plates. , 2004, IEEE transactions on ultrasonics, ferroelectrics, and frequency control.

[21]  Ernst Rank,et al.  The p‐version of the finite element method for three‐dimensional curved thin walled structures , 2001 .

[22]  Christian Willberg Development of a new isogeometric finite element and its application forLamb wave based structural health monitoring , 2013 .

[23]  G. Karniadakis,et al.  Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .

[24]  M. Jensen,et al.  HIGH CONVERGENCE ORDER FINITE ELEMENTS WITH LUMPED MASS MATRIX , 1996 .

[25]  Christian Willberg,et al.  Development of a three-dimensional piezoelectric isogeometric finite element for smart structure applications , 2012, Acta Mechanica.

[26]  Ashley F. Emery,et al.  Accuracy in modeling the acoustic wave equation with Chebyshev spectral finite elements , 1997 .

[27]  Ulrich Gabbert,et al.  Anisotropic hierarchic finite elements for the simulation of piezoelectric smart structures , 2013 .

[28]  D Komatitsch,et al.  CASTILLO-COVARRUBIAS JM, SANCHEZ-SESMA FJ. THE SPECTRAL ELEMENT METHOD FOR ELASTIC WAVE EQUATIONS-APPLICATION TO 2-D AND 3-D SEISMIC PROBLEMS , 1999 .

[29]  Ashley F. Emery,et al.  An evaluation of the cost effectiveness of Chebyshev spectral and p-finite element solutions to the scalar wave equation , 1999 .

[30]  U. Gabbert,et al.  Comparison of different higher order finite element schemes for the simulation of Lamb waves , 2012 .

[31]  I. Doležel,et al.  Higher-Order Finite Element Methods , 2003 .

[32]  Samir Mustapha,et al.  Concise analysis of wave propagation using the spectral element method and identification of delamination in CF/EP composite beams , 2010 .

[33]  Dominik Schillinger,et al.  The p- and B-spline versions of the geometrically nonlinear finite cell method and hierarchical refinement strategies for adaptive isogeometric and embedded domain analysis , 2012 .

[34]  Marek Krawczuk,et al.  Certain numerical issues of wave propagation modelling in rods by the Spectral Finite Element Method , 2011 .

[35]  Sascha Duczek,et al.  Higher order finite elements and the fictitious domain concept for wave propagation analysis , 2014 .

[36]  A. Preumont,et al.  Finite element modelling of piezoelectric active structures , 2001 .

[37]  U Gabbert,et al.  Simulation of Lamb wave reflections at plate edges using the semi-analytical finite element method. , 2012, Ultrasonics.

[38]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[39]  Jochen Moll,et al.  Spectral element modelling of wave propagation in isotropic and anisotropic shell-structures including different types of damage , 2010 .

[40]  Géza Seriani,et al.  Spectral element method for acoustic wave simulation in heterogeneous media , 1994 .

[41]  Fu-Kuo Chang,et al.  Optimizing a spectral element for modeling PZT-induced Lamb wave propagation in thin plates , 2009 .

[42]  Claus-Peter Fritzen,et al.  Simulation of wave propagation in damped composite structures with piezoelectric coupling , 2011 .

[43]  Laurence J. Jacobs,et al.  Modeling elastic wave propagation in waveguides with the finite element method , 1999 .

[44]  I. Babuska,et al.  Introduction to Finite Element Analysis: Formulation, Verification and Validation , 2011 .

[45]  P. Pinsky,et al.  Complex wavenumber Fourier analysis of the p-version finite element method , 1994 .

[46]  Mark M. Derriso,et al.  The effect of actuator bending on Lamb wave displacement fields generated by a piezoelectric patch , 2008 .

[47]  Christian Willberg,et al.  Development, Validation and Comparison of Higher Order Finite Element Approaches to Compute the Propagation of Lamb Waves Efficiently , 2012 .