Lyapunov-based model predictive control for tracking of nonholonomic mobile robots under input constraints

This paper studies the tracking problem of nonholonomic wheeled robots subject to control input constraints. In order to take optimality considerations into account while designing saturated tracking controllers, a Lyapunov-based predictive tracking controller is developed, in which the contractive constraint is characterized by a backup global saturated tracking controller. Theoretical results on ensuring global feasibility and closed-loop stability of the controller are provided. In addition, the proposed methodology admits suboptimal solutions. Finally, numerical simulations are performed to verify the effectiveness of the proposed control strategy.

[1]  Georges Bastin,et al.  Control of Nonholonomic Wheeled Mobile Robots by State Feedback Linearization , 1995, Int. J. Robotics Res..

[2]  Ching-Hung Lee,et al.  Tracking control of unicycle-modeled mobile robots using a saturation feedback controller , 2001, IEEE Trans. Control. Syst. Technol..

[3]  Chaoli Wang,et al.  Saturated tracking control for nonholonomic mobile robots with dynamic feedback , 2013 .

[4]  Panagiotis D. Christofides,et al.  Lyapunov-Based Model Predictive Control of Nonlinear Systems Subject to Data Losses , 2007, IEEE Transactions on Automatic Control.

[5]  Jürgen Pannek,et al.  Analysis of unconstrained nonlinear MPC schemes with time varying control horizon , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[6]  Yu. S. Ledyaev,et al.  Asymptotic controllability implies feedback stabilization , 1997, IEEE Trans. Autom. Control..

[7]  Huiping Li,et al.  Distributed receding horizon control of constrained nonlinear vehicle formations with guaranteed γ-gain stability , 2016, Autom..

[8]  Jian Chen,et al.  Leader-Follower Formation Control of Multiple Non-holonomic Mobile Robots Incorporating a Receding-horizon Scheme , 2010, Int. J. Robotics Res..

[9]  Karl Worthmann,et al.  Model Predictive Control of Nonholonomic Mobile Robots Without Stabilizing Constraints and Costs , 2016, IEEE Transactions on Control Systems Technology.

[10]  Hua Chen,et al.  Robust stabilization for a class of dynamic feedback uncertain nonholonomic mobile robots with input saturation , 2014 .

[11]  Henk Nijmeijer,et al.  Tracking Control of Mobile Robots: A Case Study in Backstepping , 1997, Autom..

[12]  Adriaan Arie Johannes Lefeber,et al.  Tracking Control of Nonlinear Mechanical Systems , 2000 .

[13]  Zoltan K. Nagy,et al.  Nonlinear model predictive control of a four tank system: an experimental stability study , 2006, 2006 IEEE International Conference on Control Applications.

[14]  Panagiotis D. Christofides,et al.  Stabilization of nonlinear systems with state and control constraints using Lyapunov-based predictive control , 2005, Proceedings of the 2005, American Control Conference, 2005..

[15]  Dongkyoung Chwa,et al.  Sliding-mode tracking control of nonholonomic wheeled mobile robots in polar coordinates , 2004, IEEE Transactions on Control Systems Technology.

[16]  Huiping Li,et al.  Continuous-time model predictive control of under-actuated spacecraft with bounded control torques , 2017, Autom..

[17]  F. Fontes Discontinuous feedbacks, discontinuous optimal controls, and continuous-time model predictive control , 2003 .

[18]  Baocang Ding,et al.  Distributed RHC for Tracking and Formation of Nonholonomic Multi-Vehicle Systems , 2014, IEEE Transactions on Automatic Control.

[19]  Zhong-Ping Jiang,et al.  Saturated stabilization and tracking of a nonholonomic mobile robot , 2001 .

[20]  Manfred Morari,et al.  Contractive model predictive control for constrained nonlinear systems , 2000, IEEE Trans. Autom. Control..

[21]  R. W. Brockett,et al.  Asymptotic stability and feedback stabilization , 1982 .

[22]  H. Nijmeijer,et al.  Non-linear model predictive control for constrained mobile robots , 2001, 2001 European Control Conference (ECC).

[23]  Jay H. Lee,et al.  Model predictive control: Review of the three decades of development , 2011 .

[24]  David Q. Mayne,et al.  Model predictive control: Recent developments and future promise , 2014, Autom..

[25]  Frank Allgöwer,et al.  A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability , 1997, 1997 European Control Conference (ECC).

[26]  Ju Zhang,et al.  Control of a laboratory 3-DOF helicopter: Explicit model predictive approach , 2016 .

[27]  Dongbing Gu,et al.  Receding horizon tracking control of wheeled mobile robots , 2006, IEEE Transactions on Control Systems Technology.

[28]  Fumio Miyazaki,et al.  A stable tracking control method for an autonomous mobile robot , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[29]  Huiping Li,et al.  Receding Horizon Formation Tracking Control of Constrained Underactuated Autonomous Underwater Vehicles , 2017, IEEE Transactions on Industrial Electronics.