The Lennard-Jones Fluid Revisited: Computer Simulation Results

Abstract Pseudoexperimental data of high accuracy on the pressure and the internal energy of the Lennard-Jones fluid have been generated both by the Monte Carlo and molecular dynamics methods for five subcritical and three supercritical isotherms. Values of the chemical potential of the Lennard-Jones fluid computed by a new version of the gradual insertion particle method for two isotherms up to very high densities are also reported and discussed, and compared with existing data.

[1]  J. Barker,et al.  The equation of state of simple liquids , 1968 .

[2]  J. Kolafa Convergence Properties of Monte Carlo Simulations on Fluids , 1991 .

[3]  W. W. Wood,et al.  Molecular dynamics calculations of the hard-sphere equation of state , 1984 .

[4]  Koichiro Nakanishi,et al.  Generalized equation of state for Lennard-Jones fluids—I. Pure fluids and simple mixtures , 1988 .

[5]  K. Shing,et al.  Fluid phase equilibriums: experiment, computer simulation, and theory , 1983 .

[6]  J. Fischer,et al.  On the Application of Widom's Test Particle Method to Homogeneous and Inhomogeneous Fluids , 1987 .

[7]  L. Scriven,et al.  Efficient molecular simulation of chemical potentials , 1989 .

[8]  I. Nezbeda,et al.  On the way from theoretical calculations to practical equations of state for real fluids , 1989 .

[9]  D. Frenkel,et al.  An explicit expression for finite-size corrections to the chemical potential , 1989 .

[10]  Ivo Nezbeda,et al.  A New Version of the Insertion Particle Method for Determining the Chemical Potential by Monte Carlo Simulation , 1991 .

[11]  Jean-Pierre Hansen,et al.  Phase Transitions of the Lennard-Jones System , 1969 .

[12]  J. Kolafa On optimization of Monte Carlo simulations , 1988 .

[13]  A. Malijevský,et al.  Equation of state of a Lennard-Jones 12-6 pairwise additive fluid , 1980 .

[14]  I. R. Mcdonald,et al.  An equation of state for simple liquids , 1972 .

[15]  I. Nezbeda,et al.  Thermodynamic properties of the Lennard-Jones fluid. I: Simulation data, rigorous theories and parameterized equations of state , 1989 .

[16]  K. Shing,et al.  The chemical potential in dense fluids and fluid mixtures via computer simulation , 1982 .

[17]  D. J. Adams,et al.  Calculating the high-temperature vapour line by Monte Carlo , 1976 .

[18]  D. Frenkel,et al.  Computer simulations in the Gibbs ensemble , 1989 .

[19]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[20]  A. J. Stam,et al.  Estimation of statistical errors in molecular simulation calculations , 1986 .

[21]  D. J. Tildesley,et al.  Equation of state for the Lennard-Jones fluid , 1979 .

[22]  I. Nezbeda,et al.  Perturbed hard sphere equations of state of real fluids—II. Residual parameter ap of non-polar liquids , 1987 .

[23]  A. Ralston A first course in numerical analysis , 1965 .

[24]  Stanley I. Sandler,et al.  Equations of state from generalized perturbation theory: Part II. The Lennard-Jones fluid , 1991 .

[25]  I. Nezbeda,et al.  Perturbed hard-sphere equations of state of real fluids. II. Effective hard-sphere diameters and residual properties , 1984 .

[26]  H. G. Petersen,et al.  Error estimates on averages of correlated data , 1989 .

[27]  B. Widom,et al.  Some Topics in the Theory of Fluids , 1963 .

[28]  J. Kolafa Finite size effects for liquids in cyclic boundary conditions , 1992 .

[29]  A. Sokal,et al.  New Monte Carlo method for the self-avoiding walk , 1985 .