BezelGlide: Interacting with Graphs on Smartwatches with Minimal Screen Occlusion

We present BezelGlide, a novel suite of bezel interaction techniques, designed to minimize screen occlusion and ‘fat finger’ effects, when interacting with common graphs on smartwatches. To explore the design of BezelGlide, we conducted two user studies. First, we quantified the amount of screen occlusion experienced when interacting with the smartwatch bezel. Next, we designed two techniques that involve gliding the finger along the smartwatch bezel for graph interaction. Full BezelGlide (FBG) and Partial BezelGlide (PBG), use the full or a portion of the bezel, respectively, to reduce screen occlusion while scanning a line chart for data. In the common value detection task, we find that PBG outperforms FBG and Shift, a touchscreen occlusion-free technique, both quantitatively and subjectively, also while mobile. We finally illustrate the generzability potential of PBG to interact with common graph types making it a valuable interaction technique for smartwatch users.

[1]  Tovi Grossman,et al.  NanoStylus: Enhancing Input on Ultra-Small Displays with a Finger-Mounted Stylus , 2015, UIST.

[2]  Niklas Elmqvist,et al.  Graphical Perception of Multiple Time Series , 2010, IEEE Transactions on Visualization and Computer Graphics.

[3]  Xing-Dong Yang,et al.  Exploring Eyes-free Bezel-initiated Swipe on Round Smartwatches , 2020, CHI.

[4]  Stephen A. Brewster,et al.  The Effects of Encumbrance and Mobility on Touch-Based Gesture Interactions for Mobile Phones , 2015, MobileHCI.

[5]  Marc Alexa,et al.  Visualizing time-series on spirals , 2001, IEEE Symposium on Information Visualization, 2001. INFOVIS 2001..

[6]  Benjamin B. Bederson,et al.  ThumbSpace: Generalized One-Handed Input for Touchscreen-Based Mobile Devices , 2007, INTERACT.

[7]  Jorge Gonçalves,et al.  Quantifying Sources and Types of Smartwatch Usage Sessions , 2017, CHI.

[8]  F. E. Croxton,et al.  Graphic Comparisons by Bars, Squares, Circles, and Cubes , 1932 .

[9]  Christina Boucher,et al.  Exploring Non-touchscreen Gestures for Smartwatches , 2016, CHI.

[10]  Daniel Vogel,et al.  Shift: a technique for operating pen-based interfaces using touch , 2007, CHI.

[11]  Buntarou Shizuki,et al.  B2B-Swipe: Swipe Gesture for Rectangular Smartwatches from a Bezel to a Bezel , 2016, CHI.

[12]  Tak-Chung Fu,et al.  Stock time series pattern matching: Template-based vs. rule-based approaches , 2007, Eng. Appl. Artif. Intell..

[13]  Sebastian Boring,et al.  WatchSense: On- and Above-Skin Input Sensing through a Wearable Depth Sensor , 2017, CHI.

[14]  Hui-Shyong Yeo,et al.  WatchMI: pressure touch, twist and pan gesture input on unmodified smartwatches , 2016, MobileHCI.

[15]  Ian Oakley,et al.  The Flat Finger: Exploring Area Touches on Smartwatches , 2016, CHI.

[16]  Marcos Serrano,et al.  Bezel-Tap gestures: quick activation of commands from sleep mode on tablets , 2013, CHI.

[17]  Bongshin Lee,et al.  Glanceable Visualization: Studies of Data Comparison Performance on Smartwatches , 2019, IEEE Transactions on Visualization and Computer Graphics.

[18]  Daniel Vogel,et al.  Hand occlusion with tablet-sized direct pen input , 2009, CHI.

[19]  Geehyuk Lee,et al.  Evaluation of edge-based interaction on a square smartwatch , 2018, Int. J. Hum. Comput. Stud..

[20]  Xing-Dong Yang,et al.  How to position the cursor?: an exploration of absolute and relative cursor positioning for back-of-device input , 2012, Mobile HCI.

[21]  Jeffrey Heer,et al.  Crowdsourcing graphical perception: using mechanical turk to assess visualization design , 2010, CHI.

[22]  Bhuva Narayan,et al.  "My smartwatch told me to see a sleep doctor": a study of activity tracker use , 2019, Online Inf. Rev..

[23]  Andrea Bunt,et al.  Data representations for in-situ exploration of health and fitness data , 2017, PervasiveHealth.

[24]  Pourang Irani,et al.  D-SWIME: A Design Space for Smartwatch Interaction Techniques Supporting Mobility and Encumbrance , 2018, CHI.

[25]  Daniel Vogel,et al.  Occlusion-aware interfaces , 2010, CHI.

[26]  Xiaojun Bi,et al.  COMPASS: Rotational Keyboard on Non-Touch Smartwatches , 2017, CHI.

[27]  Daniel Afergan,et al.  DriftBoard: A Panning-Based Text Entry Technique for Ultra-Small Touchscreens , 2016, UIST.

[28]  Gregory D. Abowd,et al.  WatchOut: extending interactions on a smartwatch with inertial sensing , 2016, SEMWEB.

[29]  Enrico Rukzio,et al.  CircularSelection: optimizing list selection for smartwatches , 2016, SEMWEB.

[30]  Jean-Daniel Fekete,et al.  Task taxonomy for graph visualization , 2006, BELIV '06.

[31]  Barry A. T. Brown,et al.  Situating Wearables: Smartwatch Use in Context , 2017, CHI.

[32]  Manish Marwah,et al.  Visual exploration of frequent patterns in multivariate time series , 2012, Inf. Vis..

[33]  Hadley Wickham,et al.  Visualizing Complex Data With Embedded Plots , 2015 .

[34]  Antonio Krüger,et al.  Investigating current techniques for opposite-hand smartwatch interaction , 2017, MobileHCI.

[35]  Alireza Sahami Shirazi,et al.  Text Entry on Tiny QWERTY Soft Keyboards , 2015, CHI.

[36]  Ravin Balakrishnan,et al.  PageFlip: Leveraging Page-Flipping Gestures for Efficient Command and Value Selection on Smartwatches , 2018, CHI.

[37]  Gerald Bieber,et al.  Smartwatch based Respiratory Rate and Breathing Pattern Recognition in an End-consumer Environment , 2017, iWOAR.

[38]  J. Flusser,et al.  Numerically Stable Direct Least Squares Fitting of Ellipses , 1998 .

[39]  Walter Crosby Eells,et al.  The Relative Merits of Circles and Bars for Representing Component Parts , 1926 .

[40]  Keisuke Nakamura,et al.  SoundCraft: Enabling Spatial Interactions on Smartwatches using Hand Generated Acoustics , 2017, UIST.

[41]  Gierad Laput,et al.  AuraSense: Enabling Expressive Around-Smartwatch Interactions with Electric Field Sensing , 2016, UIST.

[42]  Pourang Irani,et al.  G-Sparks: Glanceable Sparklines on Smartwatches , 2019, Graphics Interface.

[43]  Tovi Grossman,et al.  BlyncSync: Enabling Multimodal Smartwatch Gestures with Synchronous Touch and Blink , 2020, CHI.

[44]  Yvonne Rogers,et al.  Fat Finger Worries: How Older and Younger Users Physically Interact with PDAs , 2005, INTERACT.

[45]  Silvia Miksch,et al.  Qualizon graphs: space-efficient time-series visualization with qualitative abstractions , 2014, AVI.

[46]  Frederik Brudy,et al.  WRISTBAND.IO: Expanding Input and Output Spaces of a Smartwatch , 2017, CHI Extended Abstracts.

[47]  Andrew Vande Moere,et al.  On the role of design in information visualization , 2011, Inf. Vis..

[48]  Stéphane Huot,et al.  TapTap and MagStick: improving one-handed target acquisition on small touch-screens , 2008, AVI '08.

[49]  Barry A. T. Brown,et al.  Smartwatch in vivo , 2016, CHI.

[50]  Sean A. Munson,et al.  Exploring the design space of glanceable feedback for physical activity trackers , 2016, UbiComp.

[51]  Eamonn J. Keogh,et al.  Visualizing and Discovering Non-Trivial Patterns in Large Time Series Databases , 2005, Inf. Vis..

[52]  Marcos Serrano,et al.  Investigating the design space of smartwatches combining physical rotary inputs , 2017, IHM.

[53]  Petra Isenberg,et al.  Evaluation of alternative glyph designs for time series data in a small multiple setting , 2013, CHI.

[54]  Wilbur Schramm,et al.  How accurately are different kinds of graphs read? , 1954 .

[55]  Geehyuk Lee,et al.  MagTouch: Robust Finger Identification for a Smartwatch Using a Magnet Ring and a Built-in Magnetometer , 2020, CHI.

[56]  Ben Shneiderman,et al.  An Augmented Visual Query Mechanism for Finding Patterns in Time Series Data , 2002, FQAS.

[57]  Anind K. Dey,et al.  A qualitative study of smartwatch usage and its usability , 2018 .

[58]  Volker Roth,et al.  Bezel swipe: conflict-free scrolling and multiple selection on mobile touch screen devices , 2009, CHI.

[59]  Ian Oakley,et al.  Interaction on the edge: offset sensing for small devices , 2014, CHI.

[60]  Yang Zhang,et al.  LumiWatch: On-Arm Projected Graphics and Touch Input , 2018, CHI.

[61]  Daniel Vogel,et al.  Hand occlusion on a multi-touch tabletop , 2012, CHI.

[62]  Umeshwar Dayal,et al.  Importance-driven visualization layouts for large time series data , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..