Sample Path Properties of Volterra Processes

We consider the regularity of sample paths of Volterra processes. These processes are defined as stochastic integrals $$ M(t)=\int_{0}^{t}F(t,r)dX(r), \ \ t \in \mathds{R}_{+}, $$ where $X$ is a semimartingale and $F$ is a deterministic real-valued function. We derive the information on the modulus of continuity for these processes under regularity assumptions on the function $F$ and show that $M(t)$ has "worst" regularity properties at times of jumps of $X(t)$. We apply our results to obtain the optimal H\"older exponent for fractional L\'{e}vy processes.

[1]  Dominic O'Kane,et al.  Modelling Single-name and Multi-name Credit Derivatives: O'Kane/Modelling , 2008 .

[2]  Toby Daglish What motivates a subprime borrower to default , 2009 .

[3]  David X. Li On Default Correlation: A Copula Function Approach , 1999 .

[4]  Makoto Maejima,et al.  Hölder Continuity of Sample Paths of Some Self-Similar Stable Processes , 1991 .

[5]  Kenneth J. Singleton,et al.  Credit Risk: Pricing, Measurement, and Management , 2003 .

[6]  D. Applebaum Stable non-Gaussian random processes , 1995, The Mathematical Gazette.

[7]  A. McNeil,et al.  Common Poisson Shock Models: Applications to Insurance and Credit Risk Modelling , 2003, ASTIN Bulletin.

[8]  Alan G. White,et al.  Valuing Credit Default Swaps II , 2000 .

[9]  Kenneth Rogoff,et al.  Is the 2007 U.S. Sub-Prime Financial Crisis so Different? an International Historical Comparison , 2008 .

[10]  Keizo Takashima,et al.  Sample path properties of ergodic self-similar processes , 1989 .

[11]  J. Gregory,et al.  Basket Default Swaps, Cdos and Factor Copulas , 2005 .

[12]  C. Bluhm,et al.  An Introduction to Credit Risk Modeling , 2002 .

[13]  Richard F. Muth,et al.  A Regression Method for Real Estate Price Index Construction , 1963 .

[14]  Christine A. Pavel Securitization: The Analysis and Development of the Loan-Based/Asset-Backed Securities Markets , 1989 .

[15]  P. Schönbucher,et al.  Copula-Dependent Defaults in Intensity Models , 2001 .

[16]  R. Shiller,et al.  Prices of Single Family Homes Since 1970: New Indexes for Four Cities , 1987 .

[17]  S. Jaffard Wavelet Techniques in Multifractal Analysis , 2004 .

[18]  佐藤 健一 Lévy processes and infinitely divisible distributions , 2013 .

[19]  Ádám Gyenge Malliavin calculus and its applications , 2010 .

[20]  T. Marquardt Fractional Lévy processes with an application to long memory moving average processes , 2006 .

[21]  R. C. Merton,et al.  On the Pricing of Corporate Debt: The Risk Structure of Interest Rates , 1974, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[22]  K. Giesecke A Simple Exponential Model for Dependent Defaults , 2003 .

[23]  Nikunj Kapadia,et al.  Correlated Default Risk , 2006 .

[24]  Makoto Maejima,et al.  On a class of self-similar processes , 1983 .

[25]  Stéphane Jaffard,et al.  Old friends revisited: the multifractal nature of some classical functions , 1997 .

[26]  U. Frisch FULLY DEVELOPED TURBULENCE AND INTERMITTENCY , 1980 .

[27]  A New Framework for Dynamic Credit Portfolio Loss Modelling , 2008 .

[28]  D. Nualart,et al.  Compact families of Wiener functionals , 1992 .

[29]  Arnaud de Servigny,et al.  Default correlation: empirical evidence , 2002 .

[30]  David Lando,et al.  Credit Risk Modeling: Theory and Applications , 2004 .

[31]  Ricardo J. Caballero,et al.  Global Imbalances and Financial Fragility , 2009 .

[32]  Dawn Hunter Basket default swaps, CDOs and factor copulas , 2005 .

[33]  Kridsda Nimmanunta A Comparative analysis of CDO pricing models , 2006 .

[34]  Alan White,et al.  The Valuation of Correlation-Dependent Credit Derivatives Using a Structural Model , 2005 .

[35]  Franccois Roueff,et al.  Linear fractional stable sheets: Wavelet expansion and sample path properties , 2008, 0806.1725.

[36]  Leonard Rogers,et al.  A Dynamic Approach to the Modeling of Correlation Credit Derivatives Using Markov Chains , 2009 .

[37]  David Murphy A preliminary enquiry into the causes of the Credit Crunch , 2008 .

[38]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[39]  Michel Crouhy,et al.  The Subprime Credit Crisis of 07 , 2008 .

[40]  Gary B. Gorton,et al.  The Panic of 2007 , 2008 .

[41]  William N. Goetzmann,et al.  The accuracy of real estate indices: Repeat sale estimators , 1992 .

[42]  François Roueff,et al.  Local and Asymptotic Properties of Linear Fractional Stable Sheets , 2007 .

[43]  M. Marcus,et al.  Continuity and Boundedness of Infinitely Divisible Processes: A Poisson Point Process Approach , 2005 .

[44]  Emiliano A. Valdez,et al.  Understanding Relationships Using Copulas , 1998 .

[45]  F. Fabozzi The Handbook of Mortgage-Backed Securities , 1985 .

[46]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[47]  P. Schönbucher Credit Derivatives Pricing Models: Models, Pricing and Implementation , 2003 .

[48]  S. Orey,et al.  How Often on a Brownian Path Does the Law of Iterated Logarithm Fail , 1974 .

[49]  Herman Wyngarden An index of local real estate prices , 1927 .

[50]  B. Øksendal,et al.  Stochastic Calculus for Fractional Brownian Motion and Applications , 2008 .

[51]  P. Protter Stochastic integration and differential equations , 1990 .

[52]  Alexander J. McNeil,et al.  Dependent defaults in models of portfolio credit risk , 2003 .

[53]  Gary B. Gorton,et al.  Information, Liquidity, and the (Ongoing) Panic of 2007 , 2009 .

[54]  A. Sengupta,et al.  CDO tranche sensitivities in the Gaussian copula model , 2011 .

[55]  R. Engle,et al.  The Underlying Dynamics of Credit Correlations , 2005, 1001.0786.

[56]  Local Regularity of Nonsmooth Wavelet Expansions and Application to the Polya Function , 1996 .

[57]  Patrick Bajari,et al.  An Empirical Model of Subprime Mortgage Default from 2000 to 2007 , 2008 .