Some Mathematical Problems in Geophysical Fluid Dynamics

Abstract This chapter reviews the recently developed mathematical setting of the primitive equations (PEs) of the atmosphere, the ocean, and the coupled atmosphere and ocean. The mathematical issues that are considered here are the existence, uniqueness, and regularity of solutions for the time-dependent problems in space dimensions 2 and 3, the PEs being supplemented by a variety of natural boundary conditions. The emphasis is on the case of the ocean that encompasses most of the mathematical difficulties. This chapter is devoted to the PEs in the presence of viscosity, while the PEs without viscosity are considered in the chapter by Rousseau, Temam, and Tribbia in the same volume. Whereas the theory of PEs without viscosity is just starting, the theory of PEs with viscosity has developed since the early 1990s and has now reached a satisfactory level of completion. The theory of the PEs was initially developed by analogy with that of the incompressible Navier Stokes equations, but the most recent developments reported in this chapter have shown that unlike the incompressible Navier-Stokes equations and the celebrated Millenium Clay problem, the PEs with viscosity are well-posed in space dimensions 2 and 3, when supplemented with fairly general boundary conditions. This chapter is essentially self-contained, and all the mathematical issues related to these problems are developed. A guide and summary of results for the physics-oriented reader is provided at the end of the Introduction ( Section 1.4 ).

[1]  R. Temam,et al.  Numerical Simulation of Differential Systems Displaying Rapidly Oscillating Solutions , 1998 .

[2]  Roger Temam,et al.  Asymptotic analysis of the Navier-Stokes equations in the domains , 1997 .

[3]  E. Titi,et al.  Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics , 2005, math/0503028.

[4]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[5]  S. Agmon,et al.  Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I , 1959 .

[6]  N. Ju The global attractor for the solutions to the 3D viscous primitive equations , 2006 .

[7]  J. Pedlosky Geophysical Fluid Dynamics , 1979 .

[8]  R. Temam,et al.  The primitive equations on the large scale ocean under the small depth hypothesis , 2002 .

[9]  E. Boschi Recensioni: J. L. Lions - Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Gauthier-Vi;;ars, Paris, 1969; , 1971 .

[10]  M. Petcu On the three-dimensional primitive equations , 2006, Advances in Differential Equations.

[11]  Denis Serre,et al.  Handbook of mathematical fluid dynamics , 2002 .

[12]  M. Ghil,et al.  Bifurcation analysis of ocean, atmosphere and climate models , 2009 .

[13]  R. Temam,et al.  Existence and regularity results for the primitive equations in two space dimensions , 2004 .

[14]  Kevin E. Trenberth,et al.  Climate System Modeling , 2010 .

[15]  Francisco Guillén,et al.  Mathematical Justification of the Hydrostatic Approximation in the Primitive Equations of Geophysical Fluid Dynamics , 2001, SIAM J. Math. Anal..

[16]  G. Kobelkov,et al.  Existence of a solution ‘in the large’ for the 3D large-scale ocean dynamics equations , 2006 .

[17]  Roger Temam,et al.  Navier-Stokes equations in three-dimensional thin domains with various boundary conditions , 1996, Advances in Differential Equations.

[18]  P. Orenga Un théorème d'existence de solutions d'un problème de shallow water , 1995 .

[19]  Roger Temam,et al.  On the equations of the large-scale ocean , 1992 .

[20]  W. Washington,et al.  An Introduction to Three-Dimensional Climate Modeling , 1986 .

[21]  A. E. Gill Atmosphere-Ocean Dynamics , 1982 .

[22]  R. Temam,et al.  Attractors Representing Turbulent Flows , 1985 .

[23]  M. Petcu,et al.  Sobolev and Gevrey regularity results for the primitive equations in three space dimensions , 2005 .

[24]  Roger Temam,et al.  Navier-Stokes equations in thin spherical domains , 1997 .

[25]  René Laprise,et al.  The Euler Equations of Motion with Hydrostatic Pressure as an Independent Variable , 1992 .

[26]  Roger Temam,et al.  Mathematical theory for the coupled atmosphere-ocean models (CAO III) , 1995 .

[27]  Shouhong Wang On the 2D model of large-scale atmospheric motion: well-posedness and attractors , 1992 .

[28]  H. Schlichting Boundary Layer Theory , 1955 .

[29]  J. Roßmann,et al.  Elliptic Boundary Value Problems in Domains with Point Singularities , 2002 .

[30]  Francisco Guillén-González,et al.  Anisotropic estimates and strong solutions of the primitive equations , 2001, Differential and Integral Equations.

[31]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[32]  Hantaek Bae Navier-Stokes equations , 1992 .

[33]  Mohammed Ziane,et al.  Regularity results for stokes type systems , 1995 .

[34]  Tian Ma,et al.  Bifurcation Theory and Applications , 2005 .

[35]  I. Kukavica,et al.  The regularity of solutions of the primitive equations of the ocean in space dimension three , 2007 .

[36]  Shouhong Wang Attractors for the 3D baroclinic quasi-geostrophic equations of large-scale atmosphere , 1992 .

[37]  J. Hale Attractors and Dynamics in Partial Differential Equations , 2001 .

[38]  Brian D. Ewald,et al.  Maximum principles for the primitive equations of the atmosphere , 2001 .

[39]  Roger Temam,et al.  Existence and uniqueness of optimal control to the Navier-Stokes equations , 2000 .

[40]  Roger Temam,et al.  Stability of the Slow Manifold in the Primitive Equations , 2008, SIAM J. Math. Anal..

[41]  John von Neumann,et al.  Theory of games, astrophysics, hydrodynamics and meteorology , 1963 .

[42]  C. Bardos,et al.  Sur l'unicité retrograde des equations paraboliques et quelques questions voisines , 1973 .

[43]  R. Temam,et al.  Gevrey class regularity for the solutions of the Navier-Stokes equations , 1989 .

[44]  On the Behaviour of Solutions to the Dirichiet Problem for Second Order Elliptic Equations near Edges and Polyhedral Vertices with Critical Angles , 1994 .

[45]  I. Kukavica,et al.  On the regularity of the primitive equations of the ocean , 2007 .

[46]  Shouhong Wang,et al.  Geometric Theory of Incompressible Flows with Applications to Fluid Dynamics , 2005 .

[47]  M. Ziane Regularity results for the stationary primitive equations of the atmosphere and the ocean , 1997 .

[48]  J. Lions,et al.  New formulations of the primitive equations of atmosphere and applications , 1992 .

[49]  Didier Bresch,et al.  On the Two-Dimensional Hydrostatic Navier-Stokes Equations , 2005, SIAM J. Math. Anal..

[50]  P. Bartello Geostrophic Adjustment and Inverse Cascades in Rotating Stratified Turbulence , 1995 .

[51]  R. Temam,et al.  REGULARITY RESULTS FOR LINEAR ELLIPTIC PROBLEMS RELATED TO THE PRIMITIVE EQUATIONS , 2002 .

[52]  R. Temam Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .

[53]  Kinji Watanabe Sur l'unicité rétrograde dans les problèmes mixtes paraboliques; Cas de dimension $1$ , 1990 .

[54]  M. Petcu Gevrey class regularity for the primitive equations in space dimension 2 , 2004 .

[55]  Roger Temam,et al.  Renormalization group method applied to the primitive equations , 2005 .

[56]  J. Lions,et al.  Sur l'unicité réctrograde dans les problèmes mixtes paraboliques. , 1960 .

[57]  J. Ghidaglia Regularite des solutions de certains problems aux limites Lineaires lies aux equations d'euler , 1984 .

[58]  EXPONENTIAL APPROXIMATIONS FOR THE PRIMITIVE EQUATIONS OF THE OCEAN , 2006, math/0608520.

[59]  R. Temam,et al.  Models of the coupled atmosphere and ocean (CAO I). I , 1993 .

[60]  L. Margolin,et al.  A Class of Nonhydrostatic Global Models. , 2001 .

[61]  Numerical simulation of differential systems displaying rapidly oscillating solutions , 1998 .

[62]  R. Temam Navier-Stokes Equations , 1977 .

[63]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[64]  On the backward uniqueness of the primitive equations , 2007 .

[65]  V. Chepyzhov,et al.  Attractors for Equations of Mathematical Physics , 2001 .

[66]  Roger Temam,et al.  A general framework for robust control in fluid mechanics , 2000 .

[67]  R. Haney Surface Thermal Boundary Condition for Ocean Circulation Models , 1971 .