Self-ordering electron donor-acceptor nanohybrids based on single-walled carbon nanotubes across different scales.

When dealing with SWCNTs, limited control over theirgrowth and homogeneous production imposes, however,major drawbacks for emerging areas of nanotechnology.Equally problematic is their rather poor solubility in commonorganic solvents. Large spaghetti-like bundles, that originatefrom attractive interactions such as p–p stacking and Londondispersion forces, are the cause of insolubility.

[1]  U. Bunz,et al.  para-Connected cyclophenylenes and hemispherical polyarenes: building blocks for single-walled carbon nanotubes? , 2012, Angewandte Chemie.

[2]  Uwe H. F. Bunz,et al.  para‐Verknüpfte Cyclophenylene und halbkugelförmige Polyarene: Bausteine für einwandige Kohlenstoffnanoröhren? , 2012 .

[3]  D. Guldi,et al.  Interfacing nanocarbons with organic and inorganic semiconductors: from nanocrystals/quantum dots to extended tetrathiafulvalenes. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[4]  S. Uemura,et al.  Supramolecularly engineered perylene bisimide assemblies exhibiting thermal transition from columnar to multilamellar structures. , 2012, Journal of the American Chemical Society.

[5]  D. Guldi,et al.  Concave versus planar geometries for the hierarchical organization of mesoscopic 3D helical fibers. , 2012, Angewandte Chemie.

[6]  Sukumaran Santhosh Babu,et al.  Selbstorganisierte Gelbildner für die organische Elektronik , 2012 .

[7]  Ayyappanpillai Ajayaghosh,et al.  Self-assembled gelators for organic electronics. , 2012, Angewandte Chemie.

[8]  E. W. Meijer,et al.  Functional Supramolecular Polymers , 2012, Science.

[9]  J. Mohanraj,et al.  Modular engineering of H-bonded supramolecular polymers for reversible functionalization of carbon nanotubes. , 2011, Journal of the American Chemical Society.

[10]  Tanemasa Asano,et al.  Supramolecular hybrid of gold nanoparticles and semiconducting single-walled carbon nanotubes wrapped by a porphyrin-fluorene copolymer. , 2011, Journal of the American Chemical Society.

[11]  J. Warner,et al.  Noncovalent binding of carbon nanotubes by porphyrin oligomers. , 2011, Angewandte Chemie.

[12]  Ronald A. Smaldone,et al.  Reversible dispersion and release of carbon nanotubes using foldable oligomers. , 2010, Journal of the American Chemical Society.

[13]  D. Guldi,et al.  Covalent and noncovalent phthalocyanine-carbon nanostructure systems: synthesis, photoinduced electron transfer, and application to molecular photovoltaics. , 2010, Chemical reviews.

[14]  J. FRASER STODDART,et al.  Noncovalent functionalization of single-walled carbon nanotubes. , 2009, Accounts of chemical research.

[15]  D. Bonnell,et al.  Helical wrapping of single-walled carbon nanotubes by water soluble poly(p-phenyleneethynylene). , 2009, Nano letters.

[16]  C. Böttcher,et al.  High population of individualized SWCNTs through the adsorption of water-soluble perylenes. , 2009, Journal of the American Chemical Society.

[17]  Valeria Nicolosi,et al.  Ordered DNA wrapping switches on luminescence in single-walled nanotube dispersions. , 2008, Journal of the American Chemical Society.

[18]  M. Herranz,et al.  The nano-forms of carbon , 2008 .

[19]  M. Prato,et al.  Spectroscopic characterization of photolytically generated radical ion pairs in single-wall carbon nanotubes bearing surface-immobilized tetrathiafulvalenes. , 2008, Journal of the American Chemical Society.

[20]  Francesco Zerbetto,et al.  Interactions in single wall carbon nanotubes/pyrene/porphyrin nanohybrids. , 2006, Journal of the American Chemical Society.

[21]  M. Prato,et al.  Chemistry of carbon nanotubes. , 2006, Chemical reviews.

[22]  K. Sakurai,et al.  Inclusion of cut and as-grown single-walled carbon nanotubes in the helical superstructure of schizophyllan and curdlan (beta-1,3-glucans). , 2005, Journal of the American Chemical Society.

[23]  M. Dresselhaus,et al.  Structure-Based Carbon Nanotube Sorting by Sequence-Dependent DNA Assembly , 2003, Science.

[24]  Edgar Muñoz,et al.  Controlled assembly of carbon nanotubes by designed amphiphilic Peptide helices. , 2003, Journal of the American Chemical Society.

[25]  Hongjie Dai,et al.  Carbon nanotubes: synthesis, integration, and properties. , 2002, Accounts of chemical research.

[26]  H. Hövel,et al.  Growth mechanisms of carbon nanotubes using controlled production in ultrahigh vacuum , 2002 .

[27]  A. Hirsch Functionalization of single-walled carbon nanotubes. , 2002, Angewandte Chemie.

[28]  A. Hirsch,et al.  Funktionalisierung von einwandigen Kohlenstoffnanoröhren , 2002 .

[29]  Y. S. Cho,et al.  Carbon nanotubes synthesized by Ni-assisted atmospheric pressure thermal chemical vapor deposition , 2002 .

[30]  M. Hodak,et al.  Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential , 2000 .

[31]  Riichiro Saito,et al.  Raman intensity of single-wall carbon nanotubes , 1998 .

[32]  T. Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[33]  M. S. de Vries,et al.  Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls , 1993, Nature.

[34]  Riichiro Saito,et al.  Electronic structure of chiral graphene tubules , 1992 .

[35]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[36]  Dirk M. Guldi,et al.  Carbon nanotubes--electronic/electrochemical properties and application for nanoelectronics and photonics. , 2009, Chemical Society reviews.

[37]  James M. Tour,et al.  Dissolution of small diameter single-wall carbon nanotubes in organic solvents? , 2001 .