Video Tracking Using Dual-Tree Wavelet Polar Matching and Rao-Blackwellised Particle Filter

We describe a video tracking application using the dual-tree Polar Matching Algorithm. We develop the dynamical and observation models in a probabilistic setting and study the empirical probability distribution of the Polar Matching output. We model the visible and occluded target statistics using Beta distributions. This is incorporated into a Track-Before-Detect (TBD) solution for the overall observation likelihood of each video frame and provides a principled derivation of the observation likelihood. Due to the nonlinear nature of the problem, we design a Rao-Blackwellised Particle Filter (RBPF) for the sequential inference. Computer simulations demonstrate the ability of the algorithm to track a simulated video moving target in an urban environment with complete and partial occlusions.

[1]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[2]  LI X.RONG,et al.  Survey of maneuvering target tracking. Part I. Dynamic models , 2003 .

[3]  Simon J. Godsill,et al.  An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo , 2007, Proceedings of the IEEE.

[4]  Patrick Pérez,et al.  Maintaining multimodality through mixture tracking , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[5]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[6]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[7]  Branko Ristic,et al.  Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .

[8]  Sze Kim Pang,et al.  Models and Algorithms for Detection and Tracking of Coordinated Groups , 2008, 2007 5th International Symposium on Image and Signal Processing and Analysis.

[9]  Jun S. Liu,et al.  Sequential Monte Carlo methods for dynamic systems , 1997 .

[10]  Frank Dellaert,et al.  MCMC-based particle filtering for tracking a variable number of interacting targets , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  N. Kingsbury Complex Wavelets for Shift Invariant Analysis and Filtering of Signals , 2001 .

[12]  Jun S. Liu,et al.  Sequential Imputations and Bayesian Missing Data Problems , 1994 .

[13]  Yaakov Bar-Shalom,et al.  Multitarget-Multisensor Tracking: Applications and Advances , 1992 .

[14]  Simon J. Godsill,et al.  Models and Algorithms for Tracking of Maneuvering Objects Using Variable Rate Particle Filters , 2007, Proceedings of the IEEE.

[15]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[16]  Nick G. Kingsbury,et al.  Rotation-invariant local feature matching with complex wavelets , 2006, 2006 14th European Signal Processing Conference.

[17]  Aysin Ertüzün,et al.  Recognition of Planar Objects Using Multiresolution Analysis , 2006, EURASIP J. Adv. Signal Process..

[18]  Michael Isard,et al.  BraMBLe: a Bayesian multiple-blob tracker , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[19]  A. Antoniadis,et al.  Wavelets and Statistics , 1995 .

[20]  G. Kitagawa Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .

[21]  William T. Freeman,et al.  Presented at: 2nd Annual IEEE International Conference on Image , 1995 .

[22]  K. Kastella,et al.  Particle filtering for multitarget detection and tracking , 2005, 2005 IEEE Aerospace Conference.

[23]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[24]  Ronald R. Coifman,et al.  In Wavelets and Statistics , 1995 .

[25]  Simon J. Godsill,et al.  Models and algorithms for tracking using trans-dimensional sequential Monte Carlo , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.