Exploring multi-dimensional spaces: a Comparison of Latin Hypercube and Quasi Monte Carlo Sampling Techniques

Three sampling methods are compared for efficiency on a number of test problems of various complexity for which analytic quadratures are available. The methods compared are Monte Carlo with pseudo-random numbers, Latin Hypercube Sampling, and Quasi Monte Carlo with sampling based on Sobol sequences. Generally results show superior performance of the Quasi Monte Carlo approach based on Sobol sequences in line with theoretical predictions. Latin Hypercube Sampling can be more efficient than both Monte Carlo method and Quasi Monte Carlo method but the latter inequality holds for a reduced set of function typology and at small number of sampled points. In conclusion Quasi Monte Carlo method would appear the safest bet when integrating functions of unknown typology.

[1]  I. Sobol,et al.  Construction and Comparison of High-Dimensional Sobol' Generators , 2011 .

[2]  D. Shahsavani,et al.  Variance-based sensitivity analysis of model outputs using surrogate models , 2011, Environ. Model. Softw..

[3]  Nilay Shah,et al.  The identification of model effective dimensions using global sensitivity analysis , 2011, Reliab. Eng. Syst. Saf..

[4]  Karl Pearson,et al.  On the General Theory of Skew Correlation and Non-Linear Regression , 2010 .

[5]  Paola Annoni,et al.  Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index , 2010, Comput. Phys. Commun..

[6]  Bertrand Iooss,et al.  Numerical studies of the metamodel fitting and validation processes , 2010, 1001.1049.

[7]  Nilay Shah,et al.  The Importance of being Global . Application of Global Sensitivity Analysis in Monte Carlo Option Pricing , 2007 .

[8]  Runze Li,et al.  Design and Modeling for Computer Experiments , 2005 .

[9]  Sergei S. Kucherenko,et al.  On global sensitivity analysis of quasi-Monte Carlo algorithms , 2005, Monte Carlo Methods Appl..

[10]  Urmila M. Diwekar,et al.  Efficient sampling techniques for uncertainties in risk analysis , 2004 .

[11]  Wei Chen,et al.  An Efficient Algorithm for Constructing Optimal Design of Computer Experiments , 2005, DAC 2003.

[12]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .

[13]  A. Saltelli,et al.  On the Relative Importance of Input Factors in Mathematical Models , 2002 .

[14]  A. Saltelli,et al.  Making best use of model evaluations to compute sensitivity indices , 2002 .

[15]  Eric Fournié,et al.  Monte Carlo Methods in Finance , 2002 .

[16]  Peter Winker,et al.  Centered L2-discrepancy of random sampling and Latin hypercube design, and construction of uniform designs , 2002, Math. Comput..

[17]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[18]  Stefano Tarantola,et al.  Sensitivity Analysis as an Ingredient of Modeling , 2000 .

[19]  Fred J. Hickernell,et al.  A generalized discrepancy and quadrature error bound , 1998, Math. Comput..

[20]  Urmila M. Diwekar,et al.  An efficient sampling technique for off-line quality control , 1997 .

[21]  A. Owen,et al.  Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 1997 .

[22]  A. Saltelli,et al.  Importance measures in global sensitivity analysis of nonlinear models , 1996 .

[23]  R. Caflisch,et al.  Quasi-Monte Carlo integration , 1995 .

[24]  T. J. Mitchell,et al.  Exploratory designs for computational experiments , 1995 .

[25]  A. Owen Controlling correlations in latin hypercube samples , 1994 .

[26]  Jeong‐Soo Park Optimal Latin-hypercube designs for computer experiments , 1994 .

[27]  Boxin Tang Orthogonal Array-Based Latin Hypercubes , 1993 .

[28]  Ilya M. Sobol,et al.  Sensitivity Estimates for Nonlinear Mathematical Models , 1993 .

[29]  A. Owen A Central Limit Theorem for Latin Hypercube Sampling , 1992 .

[30]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[31]  M. Stein Large sample properties of simulations using latin hypercube sampling , 1987 .

[32]  Ronald L. Iman,et al.  A FORTRAN-77 PROGRAM AND USER'S GUIDE FOR THE GENERATION OF LATIN HYPERCUBE AND RANDOM SAMPLES FOR USE WITH COMPUTER MODELS , 1984 .

[33]  H. Keng,et al.  Applications of number theory to numerical analysis , 1981 .

[34]  Tony Warnock,et al.  Computational investigations of low-discrepancy point-sets. , 1972 .

[35]  P. C. Gehlen,et al.  Computer Experiments , 1996 .

[36]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .