Photothermal infrared spectroscopy of airborne samples with mechanical string resonators.

Micromechanical photothermal infrared spectroscopy is a promising technique, where absorption-related heating is detected by frequency detuning of microstring resonators. We present photothermal infrared spectroscopy with mechanical string resonators providing rapid identification of femtogram-scale airborne samples. Airborne sample material is directly collected on the microstring with an efficient nondiffusion limited sampling method based on inertial impaction. Resonance frequency shifts, proportional to the absorbed heat in the microstring, are recorded as monochromatic IR light is scanned over the mid-infrared range. As a proof-of-concept, we sample and analyze polyvinylpyrrolidone (PVP) and the IR spectrum measured by photothermal spectroscopy matches the reference IR spectrum measured by an FTIR spectrometer. We further identify the organic surface coating of airborne TiO2 nanoparticles with a total mass of 4 pg. With an estimated detection limit of 44 fg, the presented sensor demonstrates a new paradigm in ultrasensitive vibrational spectroscopy for identification of airborne species.

[1]  Silvan Schmid,et al.  Damping mechanisms in high-Q micro and nanomechanical string resonators , 2011 .

[2]  K. Kurabayashi,et al.  Room temperature picowatt-resolution calorimetry , 2011 .

[3]  K. Jensen,et al.  An atomic-resolution nanomechanical mass sensor. , 2008, Nature Nanotechnology.

[4]  James K. Gimzewski,et al.  A femtojoule calorimeter using micromechanical sensors , 1994 .

[5]  Bryce J Marquis,et al.  Analytical methods to assess nanoparticle toxicity. , 2009, The Analyst.

[6]  Stephen J. Martin,et al.  Acoustic Wave Microsensors , 1993 .

[7]  P. R. Solomon,et al.  FTIR analaysis of coal. 1. techniques and determination of hydroxyl concentrations , 1982 .

[8]  Silvan Schmid,et al.  Real-time single airborne nanoparticle detection with nanomechanical resonant filter-fiber , 2013, Scientific Reports.

[9]  Larry W. Burggraf,et al.  Photothermal spectroscopy using multilayer cantilever for chemical detection , 2000 .

[10]  Arun Majumdar,et al.  Photothermal measurements at picowatt resolution using uncooled micro-optomechanical sensors , 1997 .

[11]  A. T. Saber,et al.  Inflammatory and genotoxic effects of nanoparticles designed for inclusion in paints and lacquers , 2012, Nanotoxicology.

[12]  Michael S Sacks,et al.  Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications. , 2005, Biomaterials.

[13]  Panos G. Datskos,et al.  Photomechanical chemical microsensors , 2001 .

[14]  A. Boisen,et al.  Micro string resonators as temperature sensors , 2013 .

[15]  Thomas Thundat,et al.  Photothermal spectroscopy of Bacillus anthracis and Bacillus cereus with microcantilevers , 2006 .

[16]  N. Lavrik,et al.  Detection and differentiation of biological species using microcalorimetric spectroscopy. , 2003, Ultramicroscopy.

[17]  C. Muratore,et al.  Influence of strain on thermal conductivity of silicon nitride thin films , 2012 .

[18]  T. Thundat,et al.  Photothermal cantilever deflection spectroscopy of a photosensitive polymer , 2012 .

[19]  J. Chaste,et al.  A nanomechanical mass sensor with yoctogram resolution. , 2012, Nature nanotechnology.

[20]  Panos G. Datskos,et al.  Chemical detection based on adsorption-induced and photoinduced stresses in microelectromechanical systems devices , 2001 .

[21]  M. Roukes,et al.  Zeptogram-scale nanomechanical mass sensing. , 2005, Nano letters.

[22]  J. Grate Acoustic wave microsensor arrays for vapor sensing. , 2000, Chemical reviews.

[23]  A. Boisen,et al.  Ultrasensitive string-based temperature sensors , 2011 .

[24]  M. Roukes,et al.  Nanomechanical torsional resonators for frequency-shift infrared thermal sensing. , 2013, Nano letters.

[25]  S. Manalis,et al.  Weighing of biomolecules, single cells and single nanoparticles in fluid , 2007, Nature.

[26]  Brian J. Tighe,et al.  A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies , 1998 .

[27]  T. Thundat,et al.  Multi-modal characterization of nanogram amounts of a photosensitive polymer , 2013 .

[28]  Thomas Thundat,et al.  ReviewNanosensors for trace explosive detection , 2008 .

[29]  Toshiro Hirai,et al.  Amorphous nanosilica induce endocytosis-dependent ROS generation and DNA damage in human keratinocytes , 2011, Particle and Fibre Toxicology.

[30]  Thomas Thundat,et al.  Trace explosive detection using photothermal deflection spectroscopy , 2008 .

[31]  J. K. Gimzewski,et al.  Photothermal spectroscopy with femtojoule sensitivity using a micromechanical device , 1994, Nature.

[32]  Rohit Bhargava,et al.  Routine femtogram-level chemical analyses using vibrational spectroscopy and self-cleaning scanning probe microscopy tips. , 2008, Analytical chemistry.

[33]  Nickolay V Lavrik,et al.  Detection of anthrax simulants with microcalorimetric spectroscopy: Bacillus subtilis and Bacillus cereus spores. , 2003, Applied optics.

[34]  Robert J. Messinger,et al.  Making it stick: convection, reaction and diffusion in surface-based biosensors , 2008, Nature Biotechnology.

[35]  H. Jacobs,et al.  Effective localized collection and identification of airborne species through electrodynamic precipitation and SERS-based detection , 2013, Nature Communications.

[36]  Silvan Schmid,et al.  Photothermal analysis of individual nanoparticulate samples using micromechanical resonators. , 2013, ACS nano.