Développements récents sur les groupes de tresses. Applications à la topologie et à l'algèbre

Braid groups were invented by Emil Artin in 1925. The most convenient definition of the braid group B n (n is the number of strings) is as the fundamental group of the configuration space Φ n parametrizing the subsets with n points in a given pane. From a physical point of view, the space Φ n is the configuration space of n indistinguishable particles moving in two dimensions. This explains the recent interest for the braid groups in many two-dimensional physical models, in the form of parastatistics and anyons.

[1]  A. Connes Indice des sous facteurs, algèbres de Hecke et théorie des noeuds , 1985 .

[2]  F. Gabbiani,et al.  Braid Statistics in Three-Dimensional Local Quantum Theory , 1990 .

[3]  G. Lusztig Quantum deformations of certain simple modules over enveloping algebras , 1988 .

[4]  A. A. Belavin,et al.  Solutions of the classical Yang - Baxter equation for simple Lie algebras , 1982 .

[5]  W. Magnus,et al.  Combinatorial Group Theory: COMBINATORIAL GROUP THEORY , 1967 .

[6]  Y. Ihara Profinite braid groups, Galois representations and complex multiplications , 1986 .

[7]  J. Froehlich Statistics and Monodromy in Two- and Three-Dimensional Quantum · Field Theory , 1988 .

[8]  Michio Jimbo,et al.  A q-analogue of U(g[(N+1)), Hecke algebra, and the Yang-Baxter equation , 1986 .

[9]  R. Fox,et al.  Free differential calculus. I : Derivation in the free group ring , 1953 .

[10]  R. Baxter Exactly solved models in statistical mechanics , 1982 .

[11]  E. Artin,et al.  Braids and Permutations , 1947 .

[12]  S. Doplicher,et al.  Duals of compact Lie groups realized in the Cuntz algebras and their actions on C∗-algebras , 1987 .

[13]  Saunders MacLane,et al.  Natural Associativity and Commutativity , 1963 .

[14]  A. Douady Noeuds et structures de contact en dimension 3 , 1983 .

[15]  Robert F. Coleman,et al.  Dilogarithms, regulators andp-adicL-functions , 1982 .

[16]  E. Brieskorn Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe , 1971 .

[17]  R. Randell,et al.  Pure braid groups and products of free groups , 1986 .

[18]  E. Artin The theory of braids. , 1950, American scientist.

[19]  V. Turaev The Yang-Baxter equation and invariants of links , 1988 .

[20]  P. Deligne,et al.  Les immeubles des groupes de tresses généralisés , 1972 .

[21]  Hoong-Chien Lee Physics, geometry, and topology , 1990 .

[22]  M. Rosso Finite dimensional representations of the quantum analog of the enveloping algebra of a complex simple Lie algebra , 1988 .

[23]  Y. Ihara On Galois representations arising from towers of coverings of P1\{0, 1, ∞} , 1986 .

[24]  S. Woronowicz,et al.  Tannaka-Krein duality for compact matrix pseudogroups. TwistedSU(N) groups , 1988 .

[25]  N. Reshetikhin,et al.  REPRESENTATIONS Of THE ALGEBRA Uq(sl(2)), q-ORTHOGONAL POLYNOMIALS AND INVARIANTS OF LINKS , 1990 .

[26]  T. Kohno Homology of a local system on the complement of hyperplanes , 1986 .

[27]  Kenneth C. Millett,et al.  A new polynomial invariant of knots and links , 1985 .

[28]  Vladimir Drinfeld,et al.  Hopf algebras and the quantum Yang-Baxter equation , 1985 .

[29]  S. Lane Natural Associativity and Commutativity , 1979 .

[30]  V. Jones A polynomial invariant for knots via von Neumann algebras , 1985 .

[31]  Louis H. Kauffman,et al.  State Models and the Jones Polynomial , 1987 .

[32]  Masamichi Takesaki,et al.  A Characterization of Group Algebras as a Converse of Tannaka-Stinespring-Tatsuuma Duality Theorem , 1969 .

[33]  Egbert Brieskorn Sur les groupes de tresses , 1972 .

[34]  P. Cartier Les arrangements d'hyperplans : un chapitre de géométrie combinatoire , 1981 .

[35]  Claus Michael Ringel,et al.  Hall algebras and quantum groups , 1990 .

[36]  N. Reshetikhin,et al.  Quantum Groups , 1993, hep-th/9311069.

[37]  Toshitake Kohno,et al.  Linear representations of braid groups and classical Yang-Baxter equations , 1988 .

[38]  Edward Witten,et al.  Quantum field theory and the Jones polynomial , 1989 .

[39]  Egbert Brieskorn,et al.  Artin-Gruppen und Coxeter-Gruppen , 1972 .

[40]  Louis H. Kauffman,et al.  Formal Knot Theory , 1983 .

[41]  S. Woronowicz,et al.  Compact matrix pseudogroups , 1987 .

[42]  Vaughan F. R. Jones,et al.  Hecke algebra representations of braid groups and link polynomials , 1987 .

[43]  H. Wenzl Hecke algebras of typeAn and subfactors , 1988 .

[44]  M. Rosso Groupes quantiques et modèles à vertex de V. Jones en théorie des nœuds , 1990 .

[45]  M. .. Moore Exactly Solved Models in Statistical Mechanics , 1983 .

[46]  J. Fröhlich,et al.  Braid matrices and structure constants for minimal conformal models , 1989 .

[47]  Pierre Deligne,et al.  Hodge Cycles, Motives, and Shimura Varieties , 1989 .

[48]  H. Petry,et al.  Differential geometrical methods in theoretical physics , 1977 .

[49]  Vladimir Turaev,et al.  Invariants of 3-manifolds via link polynomials and quantum groups , 1991 .

[50]  C. Yang,et al.  Braid Group Knot Theory and Statistical Mechanics , 1989 .

[51]  Joan S. Birman,et al.  Braids, Links, and Mapping Class Groups. (AM-82) , 1975 .

[52]  S. Maclane,et al.  Categories for the Working Mathematician , 1971 .

[53]  V. Arnold Topological invariants of algebraic functions II , 1970 .

[54]  Vladimir I. Arnold,et al.  The cohomology ring of the colored braid group , 1969 .

[55]  J. Birman Braids, Links, and Mapping Class Groups. , 1975 .

[56]  Pierre Cartier,et al.  Jacobiennes généralisées, monodromie unipotente et intégrales itérées , 1987 .

[57]  Michael Atiyah,et al.  Topological quantum field theories , 1988 .

[58]  F. Y. Wu The Potts model , 1982 .

[59]  L. Neuwirth,et al.  The Braid Groups. , 1962 .

[60]  F. A. Garside,et al.  THE BRAID GROUP AND OTHER GROUPS , 1969 .

[61]  H. Wenzl Hecke algebras of type A n and subfactors , 1988 .

[62]  Peter Norbert Hoefsmit Representations of Hecke Algebras of finite groups with BN-Pairs of classical type , 1974 .

[63]  G. M. Kelly,et al.  Coherence for compact closed categories , 1980 .

[64]  P. Deligné Le Groupe Fondamental de la Droite Projective Moins Trois Points , 1989 .

[65]  Vaughan F. R. Jones Index for subfactors , 1983 .

[66]  J. Serre Applications algébriques de la cohomologie des groupes. II : théorie des algèbres simples , 1951 .

[67]  John E. Roberts,et al.  Endomorphisms of C*-algebras, cross products and duality for compact groups , 1989 .

[68]  John E. Roberts,et al.  A new duality theory for compact groups , 1989 .

[69]  Vaughan F. R. Jones,et al.  On a certain value of the Kauffman polynomial , 1989 .

[70]  Louis H. Kauffman,et al.  New invariants in the theory of knots , 1988 .

[71]  A. Givental Twisted Picard-Lefschetz formulas , 1988 .