DISK BRAKING IN YOUNG STARS: PROBING ROTATION IN CHAMAELEON I AND TAURUS-AURIGA

We present a comprehensive study of rotation, disk, and accretion signatures for 144 T Tauri stars in the young (∼2 Myr old) Chamaeleon I and Taurus-Auriga star-forming regions based on multi-epoch high-resolution optical spectra from the Magellan Clay 6.5 m telescope supplemented by mid-infrared photometry from the Spitzer Space Telescope. In contrast to previous studies in the Orion Nebula Cluster and NGC 2264, we do not see a clear signature of disk braking in Tau-Aur and Cha I. We find that both accretors and non-accretors have similar distributions of vsin i. This result could be due to different initial conditions, insufficient time for disk braking, or a significant age spread within the regions. The rotational velocities in both regions show a clear mass dependence, with F–K stars rotating on average about twice as fast as M stars, consistent with results reported for other clusters of similar age. Similarly, we find the upper envelope of the observed values of specific angular momentum j varies as M0.5 for our sample which spans a mass range of ∼0.16–3 M☉. This power law complements previous studies in Orion which estimated j ∝ M0.25 for ≲2 Myr stars in the same mass regime, and a sharp decline in j with decreasing mass for older stars (∼10 Myr) with M < 2 M☉. Furthermore, the overall specific angular momentum of this ∼10 Myr population is five times lower than that of non-accretors in our sample, and implies a stellar braking mechanism other than disk braking could be at work. For a subsample of 67 objects with mid-infrared photometry, we examine the connection between accretion signatures and dusty disks: in the vast majority of cases (63/67), the two properties correlate well, which suggests that the timescale of gas accretion is similar to the lifetime of inner disks.

[1]  D. F. Gray,et al.  The Observation and Analysis of Stellar Photospheres , 2021 .

[2]  D. Nguyen,et al.  HOW VARIABLE IS ACCRETION IN YOUNG STARS? , 2009, 0902.4235.

[3]  D. Nguyen,et al.  A Comprehensive View of Circumstellar Disks in Chamaeleon I: Infrared Excess, Accretion Signatures, and Binarity , 2007, 0708.0266.

[4]  L. Cieza,et al.  Testing the Disk Regulation Paradigm with Spitzer Observations. II. A Clear Signature of Star-Disk Interaction in NGC 2264 and the Orion Nebula Cluster , 2007, 0707.4509.

[5]  R. Jayawardhana,et al.  Rotation and Activity of Pre-Main-Sequence Stars , 2007, 0704.3266.

[6]  W. Herbst,et al.  Testing the Disk-locking Paradigm: An Association between U – V Excess and Rotation in NGC 2264 , 2006, astro-ph/0607206.

[7]  L. Cieza,et al.  Testing the Disk Regulation Paradigm with Spitzer Observations. I. Rotation Periods of Pre-Main-Sequence Stars in the IC 348 Cluster , 2006, astro-ph/0606127.

[8]  Alexis Brandeker,et al.  Accretion Disks around Young Stars: Lifetimes, Disk Locking, and Variability , 2006, astro-ph/0605601.

[9]  L. Hartmann,et al.  A Correlation between Pre-Main-Sequence Stellar Rotation Rates and IRAC Excesses in Orion , 2006, astro-ph/0604104.

[10]  R. Pudritz,et al.  Accretion-powered Stellar Winds as a Solution to the Stellar Angular Momentum Problem , 2005, astro-ph/0510060.

[11]  Subhanjoy Mohanty,et al.  The T Tauri Phase Down to Nearly Planetary Masses: Echelle Spectra of 82 Very Low Mass Stars and Brown Dwarfs , 2005, astro-ph/0502155.

[12]  C. Bailer-Jones,et al.  Rotational evolution of low mass stars: The case of NGC 2264 ? , 2005 .

[13]  K. Luhman New Brown Dwarfs and an Updated Initial Mass Function in Taurus , 2004, astro-ph/0411447.

[14]  W. Sherry,et al.  Photometric Identification of the Low-Mass Population of Orion OB1b. I. The σ Orionis Cluster , 2004, astro-ph/0410244.

[15]  Gary J. Melnick,et al.  In-flight performance and calibration of the Infrared Array Camera (IRAC) for the Spitzer Space Telescope , 2004, SPIE Astronomical Telescopes + Instrumentation.

[16]  L. Testi,et al.  Accretion in brown dwarfs: An infrared view , 2004, astro-ph/0406106.

[17]  R. Makidon,et al.  Periodic Variability of Pre-Main-Sequence Stars in the NGC 2264 OB Association , 2004 .

[18]  K. Luhman A Census of the Chamaeleon I Star-forming Region , 2004, astro-ph/0402509.

[19]  L. Rebull,et al.  Stellar Rotation in Young Clusters: The First 4 Million Years , 2004 .

[20]  L. Hillenbrand,et al.  The Angular Momentum Evolution of 0.1-10 M☉ Stars from the Birth Line to the Main Sequence , 2003, astro-ph/0310280.

[21]  R. Jayawardhana,et al.  Evidence for a T Tauri Phase in Young Brown Dwarfs , 2003, astro-ph/0303565.

[22]  Stephen A. Shectman,et al.  MIKE: A Double Echelle Spectrograph for the Magellan Telescopes at Las Campanas Observatory , 2003, SPIE Astronomical Telescopes + Instrumentation.

[23]  L. Hartmann,et al.  The Initial Mass Function in the Taurus Star-forming Region , 2002 .

[24]  Caltech,et al.  Very Low Mass Stars and Brown Dwarfs in Taurus-Auriga , 2002, astro-ph/0209164.

[25]  Coryn A. L. Bailer-Jones,et al.  Stellar rotation and variability in the Orion Nebula Cluster , 2002 .

[26]  R. Makidon,et al.  The Early Angular Momentum History of Low-Mass Stars: Evidence for a Regulation Mechanism , 2002, astro-ph/0203384.

[27]  L. Hartmann,et al.  On Disk Braking of T Tauri Rotation , 2002 .

[28]  R. P. Butler,et al.  Radial Velocities for 889 Late-Type Stars , 2001, astro-ph/0112477.

[29]  L. Hartmann,et al.  Emission-Line Diagnostics of T Tauri Magnetospheric Accretion. II. Improved Model Tests and Insights into Accretion Physics , 2001 .

[30]  C. Clarke,et al.  A comparison of the rotational properties of T Tauri stars in Orion and Taurus , 2000 .

[31]  L. Hillenbrand,et al.  Circumstellar Disk Candidates Identified from Ultraviolet Excesses in the Orion Nebula Cluster Flanking Fields , 2000 .

[32]  Keivan G. Stassun,et al.  The Rotation Period Distribution of Pre-Main-Sequence Stars in and around the Orion Nebula , 1999 .

[33]  L. Hartmann,et al.  Emission-Line Diagnostics of T Tauri Magnetospheric Accretion. I. Line Profile Observations , 1998 .

[34]  Andrea Richichi,et al.  A lunar occultation and direct imaging survey of multiplicity in the Ophiuchus and Taurus star-forming regions , 1995 .

[35]  G. Neugebauer,et al.  The multiplicity of T Tauri stars in the star forming regions Taurus-Auriga and Ophiuchus-Scorpius: A 2.2 micron speckle imaging survey , 1993 .

[36]  K. M. Merrill,et al.  Angular Momentum Regulation in Low-Mass Young Stars Surrounded by Accretion Disks , 1993 .

[37]  A. Koenigl Disk accretion onto magnetic T Tauri stars , 1991 .

[38]  Frederick Mosteller,et al.  Understanding Robust and Exploratory Data Analysis. , 1983 .

[39]  K. Rice,et al.  Protostars and Planets V , 2005 .

[40]  P. Bodenheimer Angular Momentum Evolution of Young Stars and Disks , 1995 .

[41]  M. Camenzind Magnetized Disk-Winds and the Origin of Bipolar Outflows. , 1990 .