Identification of linear systems with nonlinear Luenberger Observers

The design of a nonlinear Luenberger observer for a parametrized linear system is studied. From an observability assumption of the system, the existence of such an observer is concluded. In a second step, a constructive novel algorithm for the identification of multi-input multi-output linear systems is suggested and is implemented on a second order system.

[1]  Vincent Andrieu,et al.  On the Existence of a Kazantzis--Kravaris/Luenberger Observer , 2006, SIAM J. Control. Optim..

[2]  A. Isidori,et al.  A new observer for an unknown harmonic oscillator , 2006 .

[3]  Riccardo Marino,et al.  Nonlinear control design: geometric, adaptive and robust , 1995 .

[4]  Anuradha M. Annaswamy,et al.  Stable Adaptive Systems , 1989 .

[5]  R. Marino,et al.  Adaptive observers with arbitrary exponential rate of convergence for nonlinear systems , 1995, IEEE Trans. Autom. Control..

[6]  D. Luenberger Observing the State of a Linear System , 1964, IEEE Transactions on Military Electronics.

[7]  Vincent Andrieu,et al.  Convergence Speed of Nonlinear Luenberger Observers , 2014, SIAM J. Control. Optim..

[8]  A. Shoshitaishvili,et al.  Singularities for projections of integral manifolds with applications to control and observation problems , 1990 .

[9]  G. Kreisselmeier Adaptive observers with exponential rate of convergence , 1977 .

[10]  C. Kravaris,et al.  Nonlinear observer design using Lyapunov's auxiliary theorem , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[11]  Qinghua Zhang,et al.  Adaptive observer for multiple-input-multiple-output (MIMO) linear time-varying systems , 2002, IEEE Trans. Autom. Control..

[12]  L. Praly,et al.  Remarks on the existence of a Kazantzis-Kravaris/Luenberger observer , 2004, CDC.

[13]  Petros A. Ioannou,et al.  Robust Adaptive Control , 2012 .

[14]  M. Gevers,et al.  Stable adaptive observers for nonlinear time-varying systems , 1987 .

[15]  Robert Engel,et al.  Nonlinear observers for autonomous Lipschitz continuous systems , 2003, IEEE Trans. Autom. Control..