High Order Discrete Approximations to Mayer's Problems for Linear Systems

This paper presents a discretization scheme for Mayer's type optimal control problems of linear systems. The scheme is based on second order Volterra--Fliess approximations, and on an augmentation of the control variable in a control set of higher dimension. Compared with the existing results, it has the advantage of providing a higher order accuracy, which may make it more efficient when aiming for a certain precision. Error estimations (depending on the controllability index of the system at the solution) are proved by using a recent result about stability of the optimal solution with respect to disturbances. Numerical results are provided which show the sharpness of the error estimations.

[1]  William W. Hager,et al.  Second-Order Runge-Kutta Approximations in Control Constrained Optimal Control , 2000, SIAM J. Numer. Anal..

[2]  Ursula Felgenhauer,et al.  Discretization of semilinear bang-singular-bang control problems , 2016, Comput. Optim. Appl..

[3]  Vladimir M. Veliov,et al.  The Euler Method for Linear Control Systems Revisited , 2013, LSSC.

[4]  Vladimir M. Veliov On the convexity of integrals of multivalued mappings: Applications in control theory , 1987 .

[5]  Ursula Felgenhauer,et al.  On Stability of Bang-Bang Type Controls , 2002, SIAM J. Control. Optim..

[6]  H. Maurer,et al.  Equivalence of second order optimality conditions for bang-bang control problems. Part 2 : Proofs, variational derivatives and representations , 2007 .

[7]  William W. Hager,et al.  Runge-Kutta methods in optimal control and the transformed adjoint system , 2000, Numerische Mathematik.

[8]  Martin Seydenschwanz,et al.  Convergence results for the discrete regularization of linear-quadratic control problems with bang–bang solutions , 2015, Comput. Optim. Appl..

[9]  J. Frédéric Bonnans,et al.  Error Estimates for the Euler Discretization of an Optimal Control Problem with First-Order State Constraints , 2017, SIAM J. Numer. Anal..

[10]  Gianna Stefani,et al.  Control and Cybernetics Optimality and Stability Result for Bang–bang Optimal Controls with Simple and Double Switch Behaviour * † , 2022 .

[11]  Asen L. Dontchev,et al.  An a priori Estimate for Discrete Approximations in Nonlinear Optimal Control , 1996 .

[12]  Roberto Ferretti High-order approximations of linear control systems via Runge-Kutta schemes , 2007, Computing.

[13]  Walter Alt,et al.  Regularization and implicit Euler discretization of linear-quadratic optimal control problems with bang-bang solutions , 2016, Appl. Math. Comput..

[14]  Helmut Maurer,et al.  Equivalence of second order optimality conditions for bang-bang control problems. Part 1: Main results , 2005 .

[15]  Helmut Maurer,et al.  Applications to Regular and Bang-Bang Control - Second-Order Necessary and Sufficient Optimality Conditions in Calculus of Variations and Optimal Control , 2012, Advances in design and control.

[16]  Walter Alt,et al.  An implicit discretization scheme for linear-quadratic control problems with bang–bang solutions , 2014, Optim. Methods Softw..

[17]  Robert Baier,et al.  Error bounds for Euler approximation of linear-quadratic control problems with bang-bang solutions , 2012 .

[18]  Vladimir M. Veliov,et al.  Error analysis of discrete approximations to bang-bang optimal control problems: the linear case , 2005 .

[19]  Boris S. Mordukhovich,et al.  Discrete Approximations of Differential Inclusions in Infinite-Dimensional Spaces , 2005 .

[20]  Vladimir M. Veliov,et al.  Metric Regularity and Stability of Optimal Control Problems for Linear Systems , 2013, SIAM J. Control. Optim..

[21]  Vladimir M. Veliov,et al.  Approximations to Differential Inclusions by Discrete Inclusions , 1989 .

[22]  W. Hager,et al.  Lipschitzian stability in nonlinear control and optimization , 1993 .

[23]  Robert Baier,et al.  Approximations of linear control problems with bang-bang solutions , 2013 .

[24]  E. Blum,et al.  The Mathematical Theory of Optimal Processes. , 1963 .